Efficient CNN Architecture for Multi-modal Aerial View Object Classification

被引:2
|
作者
Miron, Casian [1 ]
Pasarica, Alexandru [1 ]
Timofte, Radu [1 ]
机构
[1] Gheorghe Asachi Tech Univ, MCC Resources SRL, Iasi, Romania
关键词
D O I
10.1109/CVPRW53098.2021.00068
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The NTIRE 2021 workshop features a Multi-modal Aerial View Object Classification Challenge. Its focus is on multi-sensor imagery classification in order to improve the performance of automatic target recognition (ATR) systems. In this paper we describe our entry in this challenge, a method focused on efficiency and low computational time, while maintaining a high level of accuracy. The method is a convolutional neural network with 11 convolutions, 1 max pooling layers and 3 residual blocks which has a total of 373.130 parameters. The method ranks 3rd in the Track 2 (SAR+EO) of the challenge.
引用
收藏
页码:560 / 565
页数:6
相关论文
共 50 条
  • [11] Multi-View Multi-Modal Feature Embedding for Endomicroscopy Mosaic Classification
    Gu, Yun
    Yang, Jie
    Yang, Guang-Zhong
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 1315 - 1323
  • [12] Multi-modal Extreme Classification
    Mittal, Anshul
    Dahiya, Kunal
    Malani, Shreya
    Ramaswamy, Janani
    Kuruvilla, Seba
    Ajmera, Jitendra
    Chang, Keng-Hao
    Agarwal, Sumeet
    Kar, Purushottam
    Varma, Manik
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12383 - 12392
  • [13] A Multi-Modal, Discriminative and Spatially Invariant CNN for RGB-D Object Labeling
    Asif, Umar
    Bennamoun, Mohammed
    Sohel, Ferdous A.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (09) : 2051 - 2065
  • [14] QUARC: Quaternion Multi-Modal Fusion Architecture For Hate Speech Classification
    Kumar, Deepak
    Kumar, Nalin
    Mishra, Subhankar
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2021), 2021, : 346 - 349
  • [15] Imagery in multi-modal object learning
    Jüttner, M
    Rentschler, I
    BEHAVIORAL AND BRAIN SCIENCES, 2002, 25 (02) : 197 - +
  • [16] DEEP MULTI-MODAL SCHIZOPHRENIA DISORDER DIAGNOSIS VIA A GRU-CNN ARCHITECTURE
    Masoudi, B.
    Danishvar, S.
    NEURAL NETWORK WORLD, 2022, 32 (03) : 147 - 161
  • [17] Hierarchical Multi-Modal Prompting Transformer for Multi-Modal Long Document Classification
    Liu, Tengfei
    Hu, Yongli
    Gao, Junbin
    Sun, Yanfeng
    Yin, Baocai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 6376 - 6390
  • [18] Multi-Scale Features Are Effective for Multi-Modal Classification: An Architecture Search Viewpoint
    Fu, Pinhan
    Liang, Xinyan
    Qian, Yuhua
    Guo, Qian
    Zhang, Yayu
    Huang, Qin
    Tang, Ke
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1070 - 1083
  • [19] Architecture of multi-modal dialogue system
    Fuchs, M
    Hejda, P
    Slavík, P
    TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2000, 1902 : 433 - 438
  • [20] CNN-Based Fully Automatic Glioma Classification with Multi-modal Medical Images
    Zhao, Bingchao
    Huang, Jia
    Liang, Changhong
    Liu, Zaiyi
    Han, Chu
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 497 - 507