Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser

被引:8
|
作者
Juncheng, E. [1 ]
Stransky, Michal [1 ,2 ]
Jurek, Zoltan [3 ,4 ]
Fortmann-Grote, Carsten [1 ,5 ]
Juha, Libor [6 ,7 ]
Santra, Robin [3 ,4 ,8 ]
Ziaja, Beata [2 ,3 ]
Mancuso, Adrian P. [1 ,9 ]
机构
[1] European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany
[2] Polish Acad Sci, Inst Nucl Phys, Radzikowskiego 152, PL-31342 Krakow, Poland
[3] Deutsch Elekt Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Notkestr 85, D-22607 Hamburg, Germany
[4] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[5] Max Planck Inst Evolutionary Biol, August Thienemann Str 2, D-24306 Plon, Germany
[6] Czech Acad Sci, Inst Phys, Slovankou 3, CZ-18221 Prague 8, Czech Republic
[7] Czech Acad Sci, Inst Plasma Phys, Slovankou 3, CZ-18200 Prague 8, Czech Republic
[8] Univ Hamburg, Dept Phys, Notkestr 9-11, D-22607 Hamburg, Germany
[9] La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem, Melbourne, Vic 3086, Australia
基金
欧盟地平线“2020”;
关键词
DYNAMICS; SIMULATION; RADIOLYSIS; LAYER;
D O I
10.1038/s41598-021-97142-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a computational case study of X-ray single-particle imaging of hydrated proteins on an example of 2-Nitrogenase-Iron protein covered with water layers of various thickness, using a start-to-end simulation platform and experimental parameters of the SPB/SFX instrument at the European X-ray Free-Electron Laser facility. The simulations identify an optimal thickness of the water layer at which the effective resolution for imaging the hydrated sample becomes significantly higher than for the non-hydrated sample. This effect is lost when the water layer becomes too thick. Even though the detailed results presented pertain to the specific sample studied, the trends which we identify should also hold in a general case. We expect these findings will guide future single-particle imaging experiments using hydrated proteins.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Radiation damage in protein crystallography at X-ray free-electron lasers
    Nass, Karol Jan
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C1025 - C1025
  • [32] Radiation damage in protein crystallography at X-ray free-electron lasers
    Nass, Karol
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2019, 75 : 211 - 218
  • [33] Damage to inorganic materials illuminated by focused beam of X-ray free-electron laser radiation
    Koyama, Takahisa
    Yumoto, Hirokatsu
    Tono, Kensuke
    Togashi, Tadashi
    Inubushi, Yuichi
    Katayama, Tetsuo
    Kim, Jangwoo
    Matsuyama, Satoshi
    Yabashi, Makina
    Yamauchi, Kazuto
    Ohashi, Haruhiko
    DAMAGE TO VUV, EUV, AND X-RAY OPTICS V, 2015, 9511
  • [34] Radiation damage in protein serial femtosecond crystallography using an x-ray free-electron laser
    Lomb, Lukas
    Barends, Thomas R. M.
    Kassemeyer, Stephan
    Aquila, Andrew
    Epp, Sascha W.
    Erk, Benjamin
    Foucar, Lutz
    Hartmann, Robert
    Rudek, Benedikt
    Rolles, Daniel
    Rudenko, Artem
    Shoeman, Robert L.
    Andreasson, Jakob
    Bajt, Sasa
    Barthelmess, Miriam
    Barty, Anton
    Bogan, Michael J.
    Bostedt, Christoph
    Bozek, John D.
    Caleman, Carl
    Coffee, Ryan
    Coppola, Nicola
    DePonte, Daniel P.
    Doak, R. Bruce
    Ekeberg, Tomas
    Fleckenstein, Holger
    Fromme, Petra
    Gebhardt, Maike
    Graafsma, Heinz
    Gumprecht, Lars
    Hampton, Christina Y.
    Hartmann, Andreas
    Hauser, Guenter
    Hirsemann, Helmut
    Holl, Peter
    Holton, James M.
    Hunter, Mark S.
    Kabsch, Wolfgang
    Kimmel, Nils
    Kirian, Richard A.
    Liang, Mengning
    Maia, Filipe R. N. C.
    Meinhart, Anton
    Marchesini, Stefano
    Martin, Andrew V.
    Nass, Karol
    Reich, Christian
    Schulz, Joachim
    Seibert, M. Marvin
    Sierra, Raymond
    PHYSICAL REVIEW B, 2011, 84 (21)
  • [35] Stimulated X-Ray Raman Scattering with Free-Electron Laser Sources
    Rohringer, N.
    Kimberg, V.
    Weninger, C.
    Sanchez-Gonzalez, A.
    Lutman, A.
    Maxwell, T.
    Bostedt, C.
    Monterro, S. Carron
    Lindahl, A. O.
    Ilchen, M.
    Coffee, R. N.
    Bozek, J. D.
    Krzywinski, J.
    Kierspel, T.
    Mullins, T.
    Kuepper, J.
    Erk, B.
    Rolles, D.
    Muecke, O. D.
    London, R. A.
    Purvis, M.
    Ryan, D.
    Rocca, J. J.
    Feifel, R.
    Squibb, R.
    Zhaunerchyk, V.
    Sathe, C.
    Agaker, M.
    Mucke, M.
    Nordgren, J.
    Rubensson, J. E.
    X-RAY LASERS 2014, 2016, 169 : 201 - 207
  • [36] A predicted model-aided one-step classification-multireconstruction algorithm for X-ray free-electron laser single-particle imaging
    Jiao, Zhichao
    Geng, Zhi
    Ding, Wei
    IUCRJ, 2024, 11 : 891 - 900
  • [37] THE WIGGLER-FREE FREE-ELECTRON LASER - A SINGLE-PARTICLE MODEL
    FRUCHTMAN, A
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (12): : 4101 - 4110
  • [38] TOWARDS CLASSICAL SINGLE-PARTICLE THEORY OF THE FREE-ELECTRON LASER
    KOCHMANSKI, SS
    KULISH, VV
    ACTA PHYSICA POLONICA A, 1984, 66 (06) : 713 - 740
  • [39] Exploring the wavefront of hard X-ray free-electron laser radiation
    Rutishauser, Simon
    Samoylova, Liubov
    Krzywinski, Jacek
    Bunk, Oliver
    Gruenert, Jan
    Sinn, Harald
    Cammarata, Marco
    Fritz, David M.
    David, Christian
    NATURE COMMUNICATIONS, 2012, 3
  • [40] Attosecond polarization modulation of x-ray radiation in a free-electron laser
    Morgan, J.
    McNeil, B. W. J.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (01):