Optimal Monte Carlo method in estimating areas

被引:2
|
作者
Liu, Zhenxia [1 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
关键词
Monte Carlo method; Hit-or-miss method; Large deviations;
D O I
10.1016/j.rinam.2021.100205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that Monte Carlo method can be used to estimate the area of a region which cannot be computed directly. There are a lot of ways to choose a larger region whose area is computable when one performs Monte Carlo method, but which region is the best? In this note, we find a best region in terms of fastest speed of convergence in probability, with the help of large deviations. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] The problem of estimating the accuracy of calculation of local tallies by means of the Monte Carlo method
    D. N. Skorokhodov
    G. V. Tikhomirov
    Physics of Atomic Nuclei, 2012, 75 : 1675 - 1678
  • [42] The weight Monte Carlo method for estimating derivatives of the solution to the adjoint diffusion equation
    Mikhailov, GA
    Burmistrov, AV
    DOKLADY MATHEMATICS, 2002, 66 (02) : 168 - 171
  • [43] Quantitative cardiac SPECT imaging - A Monte Carlo method for estimating system matrices
    Sauve, Anne
    Reutter, Bryan
    Gullberg, Grant
    JOURNAL OF NUCLEAR MEDICINE, 2010, 51
  • [44] The Monte Carlo EM method for estimating multinomial probit latent variable models
    Xingcai Zhou
    Xinsheng Liu
    Computational Statistics, 2008, 23 : 277 - 289
  • [45] The problem of estimating the accuracy of calculation of local tallies by means of the Monte Carlo method
    Skorokhodov, D. N.
    Tikhomirov, G. V.
    PHYSICS OF ATOMIC NUCLEI, 2012, 75 (14) : 1675 - 1678
  • [46] The Monte Carlo EM method for estimating multinomial probit latent variable models
    Zhou, Xingcai
    Liu, Xinsheng
    COMPUTATIONAL STATISTICS, 2008, 23 (02) : 277 - 289
  • [48] Statistical Error and Optimal Parameters of the Test Particle Monte Carlo Method
    Plotnikov, M. Yu
    Shkarupa, E. V.
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 880 - 886
  • [49] A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty
    Guth, Philipp A.
    Kaarnioja, Vesa
    Kuo, Frances Y.
    Schillings, Claudia
    Sloan, Ian H.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02): : 354 - 383
  • [50] Use of design of experiments and Monte Carlo method for instruments optimal design
    Moschioni, G.
    Saggin, B.
    Tarabini, M.
    Hald, J.
    Morkholt, J.
    MEASUREMENT, 2013, 46 (02) : 976 - 984