Optimal Monte Carlo method in estimating areas

被引:2
|
作者
Liu, Zhenxia [1 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
关键词
Monte Carlo method; Hit-or-miss method; Large deviations;
D O I
10.1016/j.rinam.2021.100205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that Monte Carlo method can be used to estimate the area of a region which cannot be computed directly. There are a lot of ways to choose a larger region whose area is computable when one performs Monte Carlo method, but which region is the best? In this note, we find a best region in terms of fastest speed of convergence in probability, with the help of large deviations. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Estimating Large Global Significances with a New Monte Carlo Extrapolation Method
    Chen, Liangliang
    Chen, Yufei
    Bauer, Gerry
    Spiegel, Leonard G.
    Hu, Zhen
    Yi, Kai
    SYMMETRY-BASEL, 2025, 17 (01):
  • [22] Monte Carlo distance spectrum method for estimating BER of turbo codes
    Nakajima, S
    Sato, E
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 436 - 436
  • [23] Monte Carlo distance spectrum method for estimating BER of turbo codes
    Nakajima, S. (nakajima@iee.niit.ac.jp), 1600, IEEE Information Theory Society (Institute of Electrical and Electronics Engineers Inc.):
  • [24] Estimating metabolic pathways parameters using distributed Monte Carlo method
    Lebioda, Pawel
    Bala, Piotr
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2008, PT 2, PROCEEDINGS, 2008, 5073 : 987 - 999
  • [25] Monte Carlo distance spectrum method for estimating BER of turbo codes
    Nakajima, S
    Sato, E
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2004, E87A (04) : 958 - 960
  • [26] Empirically Estimating Error of Integration by Quasi-Monte Carlo Method
    Antonov, A. A.
    Ermakov, S. M.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2014, 47 (01) : 1 - 8
  • [27] Optimal Monte Carlo updating
    Pollet, Lode
    Rombouts, Stefan M. A.
    Van Houcke, Kris
    Heyde, Kris
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (5 2): : 056705 - 1
  • [28] Optimal Monte Carlo algorithms
    Dimov, Ivan T.
    IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing, Proceedings, 2006, : 125 - 131
  • [29] Optimal Monte Carlo updating
    Pollet, L
    Rombouts, SMA
    Van Houcke, K
    Heyde, K
    PHYSICAL REVIEW E, 2004, 70 (05):
  • [30] Monte Carlo for Estimating Exponential Convolution
    Gertsbakh, Ilya
    Neuman, Eyal
    Vaisman, Radislav
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (10) : 2696 - 2704