Physics-informed neural networks for hydraulic transient analysis in pipeline systems

被引:21
|
作者
Ye, Jiawei [1 ]
Do, Nhu Cuong [1 ]
Zeng, Wei [1 ]
Lambert, Martin [1 ]
机构
[1] Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
Hydraulic transient; Physics-informed neural network; Artificial intelligence; Pipeline system; Partial differential equations; WALL VISCOELASTICITY; PRESSURE; FRICTION; MODEL;
D O I
10.1016/j.watres.2022.118828
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In water pipeline systems, monitoring and predicting hydraulic transient events are important to ensure the proper operation of pressure control devices (e.g., pressure reducing valves) and prevent potential damages to the network infrastructure. Simulating transient pressures using traditional numerical methods, however, require a complete model with known boundary and initial conditions, which is rarely able to obtain in a real system. This paper proposes a new physics-based and data-driven method for targeted transient pressure reconstruction without the need of having a complete pipe system model. The new method formulates a physics-informed neural network (PINN) by incorporating both measured data and physical laws of the transient flow in the training process. This enables the PINN to learn and explore hidden information of the hydraulic transient (e.g., boundary conditions and wave damping characteristics) that is embedded in the measured data. The trained PINN can then be used to predict transient pressures at any location of the pipeline. Results from two numerical and one experimental case studies showed a high accuracy of the pressure reconstruction using the proposed approach. In addition, a series of sensitivity analyses have been conducted to determine the optimal hyperparameters in the PINN and to understand the effects of the sensor configuration on the model performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [32] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59
  • [33] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [34] PHYSICS-INFORMED NEURAL NETWORKS FOR FLOW-INDUCED VIBRATION PREDICTION OF A SUBSEA PIPELINE
    Yin, Guang
    Janocha, Marek Jan
    Ong, Muk Chen
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 5B, 2024,
  • [35] Applications of Physics-Informed Neural Networks in Power Systems-A Review
    Huang, Bin
    Wang, Jianhui
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (01) : 572 - 588
  • [36] Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
    Djeumou, Franck
    Neary, Cyrus
    Goubault, Eric
    Putot, Sylvie
    Topcu, Ufuk
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [37] Unravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems
    Thangamuthu, Abishek
    Kumar, Gunjan
    Bishnoi, Suresh
    Bhattoo, Ravinder
    Krishnan, N. M. Anoop
    Ranu, Sayan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [38] Parameter Identification in Manufacturing Systems Using Physics-Informed Neural Networks
    Khalid, Md Meraj
    Schenkendorf, Rene
    ADVANCES IN ARTIFICIAL INTELLIGENCE IN MANUFACTURING, ESAIM 2023, 2024, : 51 - 60
  • [39] Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
    Djeumou, Franck
    Neary, Cyrus
    Goubault, Eric
    Putot, Sylvie
    Topcu, Ufuk
    Proceedings of Machine Learning Research, 2022, 168 : 263 - 277
  • [40] Estimating Soil Hydraulic Parameters for Unsaturated Flow Using Physics-Informed Neural Networks
    Vemuri, Sai Karthikeya
    Buechner, Tim
    Denzler, Joachim
    COMPUTATIONAL SCIENCE, ICCS 2024, PT III, 2024, 14834 : 338 - 351