Quantum integrals of motion for variable quadratic Hamiltonians

被引:42
|
作者
Cordero-Soto, Ricardo [2 ]
Suazo, Erwin [3 ]
Suslov, Sergei K. [1 ,2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Math Computat & Modeling Sci Ctr, Tempe, AZ 85287 USA
[3] Univ Puerto Rico, Dept Math Sci, Mayaguez, PR 00681 USA
基金
美国国家科学基金会;
关键词
The time dependent Schrodinger equation; Cauchy initial value problem; Green function; Propagator; Quantum damped oscillators; Caldirola-Kanai Hamiltonians; Quantum integrals of motion; Lewis-Riesenfeld dynamical invariant; Ermakov s equation; Ehrenfest s theorem; DEPENDENT HARMONIC-OSCILLATOR; NONLINEAR SCHRODINGER-EQUATIONS; COHERENT STATES; CHARGED-PARTICLE; WAVE-FUNCTIONS; ADIABATIC INVARIANTS; BERRY PHASE; SYSTEMS; QUANTIZATION; EVOLUTION;
D O I
10.1016/j.aop.2010.02.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time dependent Schrodinger equation with variable quadratic Hamiltonians An extension of the Lewis-Riesenfeld dynamical invariant is given The time evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:1884 / 1912
页数:29
相关论文
共 50 条
  • [31] Quadratic Hamiltonians and Their Renormalization
    Derezinski, Jan
    METHODS OF SPECTRAL ANALYSIS IN MATHEMATICAL PHYSICS, 2009, 186 : 89 - 102
  • [32] Bosonic quadratic Hamiltonians
    Derezinski, Jan
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
  • [33] On the diagonalization of quadratic Hamiltonians
    Harkonen, Ville J.
    Gonoskov, Ivan A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (01)
  • [34] SYSTEM OF HYDRODYNAMIC TYPE ALLOWING 2 QUADRATIC INTEGRALS OF MOTION
    GLEDZER, EB
    DOKLADY AKADEMII NAUK SSSR, 1973, 209 (05): : 1046 - 1048
  • [35] ON ALGEBRAIC INTEGRALS OF THE MOTION OF POINT OVER A QUADRIC IN QUADRATIC POTENTIAL
    Sadetov, S. T.
    REGULAR & CHAOTIC DYNAMICS, 2000, 5 (02): : 201 - 212
  • [36] Linear and quadratic integrals in the problem of gyrostat motion in a magnetic field
    Ol'Shanskii, VY
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2000, 64 (01): : 65 - 73
  • [37] Singularly Perturbed Hamiltonians of a Quantum Rayleigh Gas Defined as Quadratic Forms
    Gianfausto Dell’Antonio
    Domenico Finco
    Alessandro Teta
    Potential Analysis, 2005, 22 : 229 - 261
  • [38] Tomography of multimode quantum systems with quadratic hamiltonians and multivariable hermite polynomials
    Man'ko, VI
    Sharapov, VA
    Shchukin, EV
    JOURNAL OF RUSSIAN LASER RESEARCH, 2001, 22 (05) : 410 - 436
  • [39] Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics
    Prado, FO
    de Almeida, NG
    Moussa, MHY
    Villas-Bôas, CJ
    PHYSICAL REVIEW A, 2006, 73 (04):
  • [40] Asymptotic Decoherence in Infinite-Dimensional Quantum Systems with Quadratic Hamiltonians
    J. Kupsch
    O. G. Smolyanov
    Mathematical Notes, 2003, 73 : 136 - 141