Quantum integrals of motion for variable quadratic Hamiltonians

被引:42
|
作者
Cordero-Soto, Ricardo [2 ]
Suazo, Erwin [3 ]
Suslov, Sergei K. [1 ,2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Math Computat & Modeling Sci Ctr, Tempe, AZ 85287 USA
[3] Univ Puerto Rico, Dept Math Sci, Mayaguez, PR 00681 USA
基金
美国国家科学基金会;
关键词
The time dependent Schrodinger equation; Cauchy initial value problem; Green function; Propagator; Quantum damped oscillators; Caldirola-Kanai Hamiltonians; Quantum integrals of motion; Lewis-Riesenfeld dynamical invariant; Ermakov s equation; Ehrenfest s theorem; DEPENDENT HARMONIC-OSCILLATOR; NONLINEAR SCHRODINGER-EQUATIONS; COHERENT STATES; CHARGED-PARTICLE; WAVE-FUNCTIONS; ADIABATIC INVARIANTS; BERRY PHASE; SYSTEMS; QUANTIZATION; EVOLUTION;
D O I
10.1016/j.aop.2010.02.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time dependent Schrodinger equation with variable quadratic Hamiltonians An extension of the Lewis-Riesenfeld dynamical invariant is given The time evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:1884 / 1912
页数:29
相关论文
共 50 条
  • [21] QUADRATIC HAMILTONIANS IN PHASE-SPACE QUANTUM-MECHANICS
    GADELLA, M
    GRACIABONDIA, JM
    NIETO, LM
    VARILLY, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14): : 2709 - 2738
  • [22] Quadratic quantum Hamiltonians: General canonical transformation to a normal form
    Kustura, Katja
    Rusconi, Cosimo C.
    Romero-Isart, Oriol
    PHYSICAL REVIEW A, 2019, 99 (02)
  • [23] Cubic integrals of motion and quantum superintegrability
    Gravel, S
    SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 53 - 63
  • [24] INTEGRALS OF THE MOTION FOR A NONLINEAR QUANTUM OSCILLATOR
    MANKO, VI
    HAAKE, F
    ANNALEN DER PHYSIK, 1992, 1 (04) : 302 - 310
  • [25] INTEGRALS OF MOTION IN QUANTUM-MECHANICS
    MESHKOV, AG
    SHAPOVALOV, VN
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1976, (11): : 13 - 17
  • [26] Two equivalent problems: gyrostats in free motion and parametric quadratic Hamiltonians
    Universidad de Zaragoza, Zaragoza, Spain
    Mech Res Commun, 6 (583-590):
  • [27] Two equivalent problems: Gyrostats in free motion and parametric quadratic Hamiltonians
    Elipe, A
    Lanchares, V
    MECHANICS RESEARCH COMMUNICATIONS, 1997, 24 (06) : 583 - 590
  • [28] Amplification of quadratic Hamiltonians
    Arenz, Christian
    Bondar, Denys, I
    Burgarth, Daniel
    Cormick, Cecilia
    Rabitz, Herschel
    QUANTUM, 2020, 4
  • [29] Exponentiability of quadratic Hamiltonians
    Nielsen, EB
    Rask, O
    REPORTS ON MATHEMATICAL PHYSICS, 2003, 52 (02) : 177 - 186
  • [30] Dynamics of the Wigner and Weyl functions for open quantum systems with quadratic hamiltonians
    Kupsch, I
    Smolyanov, OG
    DOKLADY MATHEMATICS, 2005, 72 (02) : 747 - 751