Quantum integrals of motion for variable quadratic Hamiltonians

被引:42
|
作者
Cordero-Soto, Ricardo [2 ]
Suazo, Erwin [3 ]
Suslov, Sergei K. [1 ,2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Math Computat & Modeling Sci Ctr, Tempe, AZ 85287 USA
[3] Univ Puerto Rico, Dept Math Sci, Mayaguez, PR 00681 USA
基金
美国国家科学基金会;
关键词
The time dependent Schrodinger equation; Cauchy initial value problem; Green function; Propagator; Quantum damped oscillators; Caldirola-Kanai Hamiltonians; Quantum integrals of motion; Lewis-Riesenfeld dynamical invariant; Ermakov s equation; Ehrenfest s theorem; DEPENDENT HARMONIC-OSCILLATOR; NONLINEAR SCHRODINGER-EQUATIONS; COHERENT STATES; CHARGED-PARTICLE; WAVE-FUNCTIONS; ADIABATIC INVARIANTS; BERRY PHASE; SYSTEMS; QUANTIZATION; EVOLUTION;
D O I
10.1016/j.aop.2010.02.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time dependent Schrodinger equation with variable quadratic Hamiltonians An extension of the Lewis-Riesenfeld dynamical invariant is given The time evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:1884 / 1912
页数:29
相关论文
共 50 条