The Glivenko-Cantelli problem, ten years later

被引:25
|
作者
Talagrand, M [1 ]
机构
[1] UNIV PARIS 06,EQUIPE ANAL,CNRS,UA 754,F-75230 PARIS 05,FRANCE
关键词
the Glivenko-Cantelli theorem;
D O I
10.1007/BF02214655
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give simple proofs of previous characterizations of Glivenko-Cantelli classes.
引用
收藏
页码:371 / 384
页数:14
相关论文
共 50 条
  • [21] Extended Glivenko-Cantelli Theorem in Nonparametric Regression
    Cheng, Fuxia
    Yan, Jigao
    Yang, Lijian
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (17) : 3720 - 3725
  • [22] NECESSARY CONDITION FOR GLIVENKO-CANTELLI CONVERGENCE IN EN
    DEHARDT, J
    ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (06): : 2177 - 2178
  • [23] Glivenko-Cantelli classes and NIP formulas
    Khanaki, Karim
    ARCHIVE FOR MATHEMATICAL LOGIC, 2024, 63 (7-8) : 1005 - 1031
  • [24] Glivenko-Cantelli type theorems and their applications
    Zhu, LX
    ACTA MATHEMATICA SCIENTIA, 1997, 17 (03) : 309 - 318
  • [25] Geometric methods in the analysis of Glivenko-Cantelli classes
    Mendelson, S
    COMPUTATIONAL LEARNING THEORY, PROCEEDINGS, 2001, 2111 : 256 - 272
  • [26] ON GLIVENKO-CANTELLI THEOREM FOR INFINITE INVARIANT MEASURES
    KLIMKO, EM
    ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (03): : 956 - &
  • [27] Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues
    Alon, Noga
    Babaioff, Moshe
    Gonczarowski, Yannai A.
    Mansour, Yishay
    Moran, Shay
    Yehudayoff, Amir
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [28] SUR LE THEOREME DE GLIVENKO-CANTELLI
    AHMAD, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1961, 252 (10): : 1413 - &
  • [29] Statistical nearly universal Glivenko-Cantelli classes
    Dudley, RM
    HIGH DIMENSIONAL PROBABILITY III, 2003, 55 : 295 - 312
  • [30] 2 GLIVENKO-CANTELLI THEOREMS FOR FINITE DIMENSION
    SCHLEE, W
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 28 (01): : 1 - 4