Extended Glivenko-Cantelli Theorem in Nonparametric Regression

被引:2
|
作者
Cheng, Fuxia [1 ]
Yan, Jigao [2 ]
Yang, Lijian [3 ,4 ]
机构
[1] Illinois State Univ, Dept Math, Normal, IL 61761 USA
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[3] Ctr Adv Stat & Econometr Res, Suzhou, Peoples R China
[4] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词
Empirical process; Glivenko-Cantelli theorem; Nonparametric regression; Residuals; DISTRIBUTION FUNCTION ESTIMATORS; STRONG UNIFORM CONSISTENCY; ERROR DENSITY;
D O I
10.1080/03610926.2012.700377
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the uniform strong consistency of the cumulative distribution function estimator in nonparametric regression. We obtain the extended Glivenko-Cantelli theorem for the residual-based empirical distribution function.
引用
收藏
页码:3720 / 3725
页数:6
相关论文
共 50 条