Lp Minkowski valuations on polytopes

被引:20
|
作者
Li, Jin [1 ,2 ]
Leng, Gangsong [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] TU Wien, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
基金
中国国家自然科学基金;
关键词
L-infinity Minkowski valuation; L-infinity projection body; L-p Minkowski valuation; Function-valued valuation; SL(n) contravariant; SL(n) covariant; PROJECTION BODIES; FIREY THEORY; AFFINE;
D O I
10.1016/j.aim.2016.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 1 <= p < infinity, Ludwig, Haberl and Parapatits classified L-P Minkowski valuations intertwining the special linear group with additional conditions such as homogeneity and continuity. In this paper,a complete classification of L-p Minkowski valuations intertwining the special linear group on polytopes without any additional conditions is established for p >= 1 including p = infinity. For n = 3 and p = 1, there exist valuations not mentioned before. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:139 / 173
页数:35
相关论文
共 50 条
  • [21] POLYTOPES VALUATIONS AND EULER RELATION
    SALLEE, GT
    CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (06): : 1412 - &
  • [22] An Euler relation for valuations on polytopes
    Klain, DA
    ADVANCES IN MATHEMATICS, 1999, 147 (01) : 1 - 34
  • [23] Minkowski valuations on convex functions
    Colesanti, Andrea
    Ludwig, Monika
    Mussnig, Fabian
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (06)
  • [24] CROFTON MEASURES AND MINKOWSKI VALUATIONS
    Schuster, Franz E.
    DUKE MATHEMATICAL JOURNAL, 2010, 154 (01) : 1 - 30
  • [25] The Steiner formula for Minkowski valuations
    Parapatits, Lukas
    Schuster, Franz E.
    ADVANCES IN MATHEMATICS, 2012, 230 (03) : 978 - 994
  • [26] Rotation equivariant Minkowski valuations
    Schneider, Rolf
    Schuster, Franz E.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [27] Minkowski valuations on convex functions
    Andrea Colesanti
    Monika Ludwig
    Fabian Mussnig
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [28] Fixed points of Minkowski valuations
    Ortega-Moreno, Oscar
    Schuster, Franz E.
    ADVANCES IN MATHEMATICS, 2021, 392
  • [29] The generalization of Minkowski problems for polytopes
    Li, Ai-Jun
    GEOMETRIAE DEDICATA, 2014, 168 (01) : 245 - 264
  • [30] The generalization of Minkowski problems for polytopes
    Ai-Jun Li
    Geometriae Dedicata, 2014, 168 : 245 - 264