Big data analytics-based traffic flow forecasting using inductive spatial-temporal network

被引:1
|
作者
Hu, Chunyang [1 ]
Ning, Bin [1 ]
Gu, Qiong [1 ]
Qu, Junfeng [1 ]
Jeon, Seunggil [2 ]
Du, Bowen [3 ]
机构
[1] Hubei Univ Arts & Sci, Sch Comp Engn, Xiangyang 441053, Hubei, Peoples R China
[2] Samsung Elect, 129,Samseong Ro, Suwon 16677, Gyeonggi Do, South Korea
[3] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
关键词
Inductive spatial-temporal network; GraphSAGE; Global temporal block; TIME;
D O I
10.1007/s10668-022-02585-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Traffic flow forecasting is crucial for urban traffic management, which alleviates traffic congestion. However, one inherent feature of urban traffic is it's instability, making it difficult to accurately forecast the future traffic flow. In this paper, we propose a model using Inductive Spatial-Temporal Network to predict the traffic flow speed of road networks. Specifically, we first utilize GraphSAGE(Graph SAmple and aggreGatE) to inductively extract the spatial features of road networks. Furthermore, we design a global temporal block to capture the temporal pattern. Then, we adopt the self-attention mechanism for evaluating the importance of nodes. Finally we introduced an autoregressive module to increase the robustness of the model. Experiments on real-world data demonstrate that considering spatial and temporal dependencies of the traffic data can achieves better performance than models without considering such relations.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Traffic Flow-Big Data Forecasting Method Based on Spatial-Temporal Weight Correlation
    Li X.
    Luo Q.
    Meng D.
    Li, Xin (lixin992319@163.com), 1600, Peking University (53): : 775 - 782
  • [2] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    35th AAAI Conference on Artificial Intelligence, AAAI 2021, 2021, 17A : 15008 - 15015
  • [3] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15008 - 15015
  • [4] Attention Based Spatial-Temporal Dynamic Interact Network for Traffic Flow Forecasting
    Xie, Junwei
    Ge, Liang
    Li, Haifeng
    Lin, Yiping
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 445 - 457
  • [5] Transformer network with decoupled spatial-temporal embedding for traffic flow forecasting
    Sun, Wei
    Cheng, Rongzhang
    Jiao, Yingqi
    Gao, Junbo
    Zheng, Zhedian
    Lu, Nan
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30148 - 30168
  • [6] Efficient Adaptive Spatial-Temporal Attention Network for Traffic Flow Forecasting
    Su, Hongyang
    Wang, Xiaolong
    Chen, Qingcai
    Qin, Yang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT V, 2023, 14173 : 205 - 220
  • [7] Spatial-temporal network for traffic forecasting based on prior knowledge and data-driven
    Ge, Liang
    Lin, Yongquan
    Li, Senwen
    Zeng, Bo
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (03) : 2449 - 2462
  • [8] Research on Traffic Flow Forecasting Based on Dynamic Spatial-Temporal Transformer
    Zhang, Hong
    Wang, Hongyan
    Zhang, Xijun
    Gong, Lei
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (07) : 301 - 313
  • [9] Hierarchical Spatial-Temporal Neural Network with Attention Mechanism for Traffic Flow Forecasting
    Lian, Qingyun
    Sun, Wei
    Dong, Wei
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [10] Adaptive Spatial-Temporal Convolution Network for Traffic Forecasting
    Li, Zhao
    Zhang, Yong
    Zhang, Zhao
    Wang, Xing
    Zhu, Lin
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, 2022, 13369 : 287 - 299