Big data analytics-based traffic flow forecasting using inductive spatial-temporal network

被引:1
|
作者
Hu, Chunyang [1 ]
Ning, Bin [1 ]
Gu, Qiong [1 ]
Qu, Junfeng [1 ]
Jeon, Seunggil [2 ]
Du, Bowen [3 ]
机构
[1] Hubei Univ Arts & Sci, Sch Comp Engn, Xiangyang 441053, Hubei, Peoples R China
[2] Samsung Elect, 129,Samseong Ro, Suwon 16677, Gyeonggi Do, South Korea
[3] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
关键词
Inductive spatial-temporal network; GraphSAGE; Global temporal block; TIME;
D O I
10.1007/s10668-022-02585-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Traffic flow forecasting is crucial for urban traffic management, which alleviates traffic congestion. However, one inherent feature of urban traffic is it's instability, making it difficult to accurately forecast the future traffic flow. In this paper, we propose a model using Inductive Spatial-Temporal Network to predict the traffic flow speed of road networks. Specifically, we first utilize GraphSAGE(Graph SAmple and aggreGatE) to inductively extract the spatial features of road networks. Furthermore, we design a global temporal block to capture the temporal pattern. Then, we adopt the self-attention mechanism for evaluating the importance of nodes. Finally we introduced an autoregressive module to increase the robustness of the model. Experiments on real-world data demonstrate that considering spatial and temporal dependencies of the traffic data can achieves better performance than models without considering such relations.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] MVSTT: A Multiview Spatial-Temporal Transformer Network for Traffic-Flow Forecasting
    Pu, Bin
    Liu, Jiansong
    Kang, Yan
    Chen, Jianguo
    Yu, Philip S.
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (03) : 1582 - 1595
  • [22] STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting
    Jiansong Liu
    Yan Kang
    Hao Li
    Haining Wang
    Xuekun Yang
    Applied Intelligence, 2023, 53 : 12472 - 12488
  • [23] Spatial-Temporal PDE Networks for Traffic Flow Forecasting
    Bao, Tianshu
    Wei, Hua
    Ji, Junyi
    Work, Daniel
    Johnson, Taylor Thomas
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-APPLIED DATA SCIENCE TRACK, PT X, ECML PKDD 2024, 2024, 14950 : 166 - 182
  • [24] Local-global dynamic correlations based spatial-temporal convolutional network for traffic flow forecasting
    Zhang, Hong
    Gong, Lei
    Zhao, Tianxin
    Zhang, Xijun
    Wang, Hongyan
    High Technology Letters, 2024, 30 (04) : 370 - 379
  • [25] STGAFormer: Spatial-temporal Gated Attention Transformer based Graph Neural Network for traffic flow forecasting
    Geng, Zili
    Xu, Jie
    Wu, Rongsen
    Zhao, Changming
    Wang, Jin
    Li, Yunji
    Zhang, Chenlin
    INFORMATION FUSION, 2024, 105
  • [26] Local-global dynamic correlations based spatial-temporal convolutional network for traffic flow forecasting
    张红
    GONG Lei
    ZHAO Tianxin
    ZHANG Xijun
    WANG Hongyan
    High Technology Letters, 2024, 30 (04) : 370 - 379
  • [27] A Short-term Traffic Flow Forecasting Model Based on Spatial-temporal Attention Neural Network
    Dong, Honghui
    Zhu, Pengcheng
    Gao, Jiayang
    Jia, Limin
    Qin, Yong
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 416 - 421
  • [28] Local-Global Spatial-Temporal Graph Convolutional Network for Traffic Flow Forecasting
    Zong, Xinlu
    Chen, Zhen
    Yu, Fan
    Wei, Siwei
    ELECTRONICS, 2024, 13 (03)
  • [29] A traffic flow forecasting method based on hybrid spatial-temporal gated convolution
    Zhang, Ying
    Yang, Songhao
    Wang, Hongchao
    Cheng, Yongqiang
    Wang, Jinyu
    Cao, Liping
    An, Ziying
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (03) : 1805 - 1817
  • [30] Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Guo, Shengnan
    Lin, Youfang
    Feng, Ning
    Song, Chao
    Wan, Huaiyu
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 922 - 929