Stochastic Phenomena in One-Dimensional Rulkov Model of Neuronal Dynamics

被引:9
|
作者
Bashkirtseva, Irina [1 ]
机构
[1] Ural Fed Univ, Ekaterinburg 620000, Russia
关键词
NOISE; SYSTEMS; CHAOS; ORDER;
D O I
10.1155/2015/495417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the nonlinear Rulkov map-based neuron model forced by random disturbances. For this model, an overview of the variety of stochastic regimes is given. For the parametric analysis of these regimes, the stochastic sensitivity functions technique is used. In a period-doubling zone, we analyze backward stochastic bifurcations modelling changes of modality of noisy neuron spiking. Noise-induced transitions in a zone of bistability are considered. It is shown how such random transitions can generate a new neuronal regime of the stochastic bursting and transfer the system from order to chaos. A transient zone of values of noise intensity corresponding to the onset of noise-induced bursting and chaotization is localized by the stochastic sensitivity functions technique.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Renormalization in one-dimensional dynamics
    De Melo, W.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (08) : 1185 - 1197
  • [42] One-Dimensional Microstructure Dynamics
    Berezovski, Arkadi
    Engelbrecht, Jueri
    Maugin, Gerard A.
    MECHANICS OF MICROSTRUCTURED SOLIDS: CELLULAR MATERIALS, FIBRE REINFORCED SOLIDS AND SOFT TISSUES, 2009, 46 : 21 - +
  • [43] Renormalization in one-dimensional dynamics
    Skripchenko, A. S.
    RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (06) : 983 - 1021
  • [44] Dynamics of one-dimensional supersolids
    Kunimi, Masaya
    Kobayashi, Michikazu
    Kato, Yusuke
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [45] One-dimensional measles dynamics
    Al-Showaikh, FNM
    Twizell, EH
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 152 (01) : 169 - 194
  • [46] Rigidity in one-dimensional dynamics
    Khanin, KM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (18-19): : 2311 - 2324
  • [47] Bistability phenomena in one-dimensional polariton wires
    Magnusson, E. B.
    Savenko, I. G.
    Shelykh, I. A.
    PHYSICAL REVIEW B, 2011, 84 (19)
  • [48] One-dimensional percolation models of transient phenomena
    Macpherson, KP
    MacKinnon, AL
    PHYSICA A, 1997, 243 (1-2): : 1 - 13
  • [49] NUMERICAL STUDY FOR THE NUCLEATION OF ONE-DIMENSIONAL STOCHASTIC CAHN-HILLIARD DYNAMICS
    Zhang, Wei
    Li, Tiejun
    Zhang, Pingwen
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (04) : 1105 - 1132
  • [50] Stochastic FEM model of one-dimensional hydrodynamic bearings with rough surfaces
    Turaga, R
    Sekhar, AS
    Majumdar, BC
    WEAR, 1996, 197 (1-2) : 221 - 227