Stochastic Phenomena in One-Dimensional Rulkov Model of Neuronal Dynamics

被引:9
|
作者
Bashkirtseva, Irina [1 ]
机构
[1] Ural Fed Univ, Ekaterinburg 620000, Russia
关键词
NOISE; SYSTEMS; CHAOS; ORDER;
D O I
10.1155/2015/495417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the nonlinear Rulkov map-based neuron model forced by random disturbances. For this model, an overview of the variety of stochastic regimes is given. For the parametric analysis of these regimes, the stochastic sensitivity functions technique is used. In a period-doubling zone, we analyze backward stochastic bifurcations modelling changes of modality of noisy neuron spiking. Noise-induced transitions in a zone of bistability are considered. It is shown how such random transitions can generate a new neuronal regime of the stochastic bursting and transfer the system from order to chaos. A transient zone of values of noise intensity corresponding to the onset of noise-induced bursting and chaotization is localized by the stochastic sensitivity functions technique.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Aging in the one-dimensional ising model with Glauber dynamics
    Prados, A
    Brey, JJ
    SanchezRey, B
    EUROPHYSICS LETTERS, 1997, 40 (01): : 13 - 18
  • [32] The dynamics of a one-dimensional fox-rabies model
    Elrish M.R.A.
    Twizell E.H.
    J. Appl. Math. Comp., 2006, 3 (149-159): : 149 - 159
  • [33] Dynamics of the random one-dimensional transverse Ising model
    Florencio, J
    Barreto, FCS
    PHYSICAL REVIEW B, 1999, 60 (13) : 9555 - 9560
  • [34] CRITICAL-DYNAMICS OF THE ONE-DIMENSIONAL BEG MODEL
    LAGE, EJS
    PHYSICS LETTERS A, 1988, 127 (01) : 9 - 13
  • [35] Continuous dynamics of the one-dimensional Heisenberg antiferromagnet model
    Dep of Automation Engineering
    Xiangtan Kuangye Xueyuan Xuebao, 1 (63-67):
  • [36] DYNAMICS OF ONE-DIMENSIONAL TRANSVERSE ISING-MODEL
    GONCALVES, LL
    ELLIOTT, RJ
    PHYSICA B & C, 1977, 86 (JAN-M): : 581 - 582
  • [37] Dynamics of spin helices in the one-dimensional XX model
    Pereira, Darren
    Mueller, Erich J.
    PHYSICAL REVIEW A, 2022, 106 (04)
  • [38] A Note on One-Dimensional Stochastic Equations
    Hans-Jurgen Engelbert
    Czechoslovak Mathematical Journal, 2001, 51 : 701 - 712
  • [39] Stochastic ripening of one-dimensional nanostructures
    Koh, SJ
    Ehrlich, G
    PHYSICAL REVIEW B, 2000, 62 (16) : 10645 - 10648
  • [40] A note on one-dimensional stochastic equations
    Engelbert, HJ
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) : 701 - 712