Size, power and false discovery rates

被引:268
|
作者
Efron, Bradley [1 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
来源
ANNALS OF STATISTICS | 2007年 / 35卷 / 04期
关键词
local false discovery rates; empirical bayes; large-scale simultaneous inference; empirical null;
D O I
10.1214/009053606000001460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Modern scientific technology has provided a new class of large-scale simultaneous inference problems, with thousands of hypothesis tests to consider at the same time. Microarrays epitomize this type of technology, but similar situations arise in proteomics, spectroscopy, imaging, and social science surveys. This paper uses false discovery rate methods to carry out both size and power calculations on large-scale problems. A simple empirical Bayes approach allows the false discovery rate (fdr) analysis to proceed with a minimum of frequentist or Bayesian modeling assumptions. Closed-form accuracy formulas are derived for estimated false discovery rates, and used to compare different methodologies: local or tail-area fdr's, theoretical, permutation, or empirical null hypothesis estimates. Two microarray data sets as well as simulations are used to evaluate the methodology, the power diagnostics showing why nonnull cases might easily fail to appear on a list of "significant" discoveries.
引用
收藏
页码:1351 / 1377
页数:27
相关论文
共 50 条
  • [41] Sequential tests of multiple hypotheses controlling false discovery and nondiscovery rates
    Bartroff, Jay
    Song, Jinlin
    SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2020, 39 (01): : 65 - 91
  • [42] Behavioral syndromes: carryover effects, false discovery rates, and a priori hypotheses
    Dochtermann, Ned A.
    BEHAVIORAL ECOLOGY, 2010, 21 (03) : 437 - 439
  • [43] Local and covariate-modulated false discovery rates applied in neuroimaging
    Lawyer, Glenn
    Ferkingstad, Egil
    Nesvag, Ragnar
    Varnas, Katarina
    Agartz, Ingrid
    NEUROIMAGE, 2009, 47 (01) : 213 - 219
  • [44] Topological false discovery rates for brain mapping based on signal height
    Li, Junning
    Gahm, Jin Kyu
    Shi, Yonggang
    Toga, Arthur W.
    NEUROIMAGE, 2018, 167 : 478 - 487
  • [45] ProteoStats-a library for estimating false discovery rates in proteomics pipelines
    Yadav, Amit Kumar
    Kadimi, Puneet Kumar
    Kumar, Dhirendra
    Dash, Debasis
    BIOINFORMATICS, 2013, 29 (21) : 2799 - 2800
  • [46] Bayesian false discovery rates for post-translational modification proteomics
    Fu, Yan
    STATISTICS AND ITS INTERFACE, 2012, 5 (01) : 47 - 59
  • [47] An Effective Method for Controlling False Discovery and False Nondiscovery Rates in Genome-Scale RNAi Screens
    Zhang, Xiaohua Douglas
    JOURNAL OF BIOMOLECULAR SCREENING, 2010, 15 (09) : 1116 - 1122
  • [48] Implementing false discovery rate control: increasing your power
    Verhoeven, KJF
    Simonsen, KL
    McIntyre, LM
    OIKOS, 2005, 108 (03) : 643 - 647
  • [49] Sample size and positive false discovery rate control for multiple testing
    Chi, Zhiyi
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 77 - 118
  • [50] DISCOVERY RATES FOR A SEARCH IN WHICH SAMPLING IS PROPORTIONAL TO SIZE
    KRAMER, M
    STARR, N
    ADVANCES IN APPLIED MATHEMATICS, 1987, 8 (02) : 222 - 236