Size, power and false discovery rates

被引:268
|
作者
Efron, Bradley [1 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
来源
ANNALS OF STATISTICS | 2007年 / 35卷 / 04期
关键词
local false discovery rates; empirical bayes; large-scale simultaneous inference; empirical null;
D O I
10.1214/009053606000001460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Modern scientific technology has provided a new class of large-scale simultaneous inference problems, with thousands of hypothesis tests to consider at the same time. Microarrays epitomize this type of technology, but similar situations arise in proteomics, spectroscopy, imaging, and social science surveys. This paper uses false discovery rate methods to carry out both size and power calculations on large-scale problems. A simple empirical Bayes approach allows the false discovery rate (fdr) analysis to proceed with a minimum of frequentist or Bayesian modeling assumptions. Closed-form accuracy formulas are derived for estimated false discovery rates, and used to compare different methodologies: local or tail-area fdr's, theoretical, permutation, or empirical null hypothesis estimates. Two microarray data sets as well as simulations are used to evaluate the methodology, the power diagnostics showing why nonnull cases might easily fail to appear on a list of "significant" discoveries.
引用
收藏
页码:1351 / 1377
页数:27
相关论文
共 50 条
  • [31] Comparison of false-discovery rates of various decoy databases
    Lee, Sangjeong
    Park, Heejin
    Kim, Hyunwoo
    PROTEOME SCIENCE, 2021, 19 (01)
  • [32] Partially Sequenced Organisms, Decoy Searches and False Discovery Rates
    Victor, Bjorn
    Gabriel, Sarah
    Kanobana, Kirezi
    Mostovenko, Ekaterina
    Polman, Katja
    Dorny, Pierre
    Deelder, Andre M.
    Palmblad, Magnus
    JOURNAL OF PROTEOME RESEARCH, 2012, 11 (03) : 1991 - 1995
  • [33] A direct approach to estimating false discovery rates conditional on covariates
    Boca, Simina M.
    Leek, Jeffrey T.
    PEERJ, 2018, 6
  • [34] IMPROVING INFERENCE FOR SPATIAL SIGNALS BY CONTEXTUAL FALSE DISCOVERY RATES
    Goelz, Martin
    Zoubir, Abdelhak M.
    Koivunen, Visa
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 5967 - 5971
  • [35] Comparison of false-discovery rates of various decoy databases
    Sangjeong Lee
    Heejin Park
    Hyunwoo Kim
    Proteome Science, 19
  • [36] Learning false discovery rates by fitting sigmoidal threshold functions
    Klaus, Bernd
    Strimmer, Korbinian
    JOURNAL OF THE SFDS, 2011, 152 (02): : 39 - 50
  • [37] False Discovery Rates for Rare Variants From Sequenced Data
    Capanu, Marinela
    Seshan, Venkatraman E.
    GENETIC EPIDEMIOLOGY, 2015, 39 (02) : 65 - 76
  • [38] On-line control of false discovery rates for multiple datastreams
    Du, Lilun
    Zou, Changliang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 194 : 1 - 14
  • [39] POWER-ENHANCED MULTIPLE DECISION FUNCTIONS CONTROLLING FAMILY-WISE ERROR AND FALSE DISCOVERY RATES
    Pena, Edsel A.
    Habiger, Joshua D.
    Wu, Wensong
    ANNALS OF STATISTICS, 2011, 39 (01): : 556 - 583
  • [40] False discovery rate, sensitivity and sample size for microarray studies
    Pawitan, Y
    Michiels, S
    Koscielny, S
    Gusnanto, A
    Ploner, A
    BIOINFORMATICS, 2005, 21 (13) : 3017 - 3024