Size, power and false discovery rates

被引:268
|
作者
Efron, Bradley [1 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
来源
ANNALS OF STATISTICS | 2007年 / 35卷 / 04期
关键词
local false discovery rates; empirical bayes; large-scale simultaneous inference; empirical null;
D O I
10.1214/009053606000001460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Modern scientific technology has provided a new class of large-scale simultaneous inference problems, with thousands of hypothesis tests to consider at the same time. Microarrays epitomize this type of technology, but similar situations arise in proteomics, spectroscopy, imaging, and social science surveys. This paper uses false discovery rate methods to carry out both size and power calculations on large-scale problems. A simple empirical Bayes approach allows the false discovery rate (fdr) analysis to proceed with a minimum of frequentist or Bayesian modeling assumptions. Closed-form accuracy formulas are derived for estimated false discovery rates, and used to compare different methodologies: local or tail-area fdr's, theoretical, permutation, or empirical null hypothesis estimates. Two microarray data sets as well as simulations are used to evaluate the methodology, the power diagnostics showing why nonnull cases might easily fail to appear on a list of "significant" discoveries.
引用
收藏
页码:1351 / 1377
页数:27
相关论文
共 50 条
  • [1] False discovery rates, power and related concepts
    Brereton, Richard G.
    JOURNAL OF CHEMOMETRICS, 2021, 35 (06)
  • [2] Computing Power and Sample Size for the False Discovery Rate in Multiple Applications
    Ni, Yonghui
    Seffernick, Anna Eames
    Onar-Thomas, Arzu
    Pounds, Stanley B.
    GENES, 2024, 15 (03)
  • [3] A direct approach to false discovery rates
    Storey, JD
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 479 - 498
  • [4] False discovery rates in spectral identification
    Jeong, Kyowon
    Kim, Sangtae
    Bandeira, Nuno
    BMC BIOINFORMATICS, 2012, 13
  • [5] False discovery rates: a new deal
    Stephens, Matthew
    BIOSTATISTICS, 2017, 18 (02) : 275 - 294
  • [6] False discovery rates and multiple testing
    Dey S.
    Delampady M.
    Resonance, 2013, 18 (12) : 1095 - 1109
  • [7] False discovery rates for spatial signals
    Benjamini, Ybav
    Heller, Ruth
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) : 1272 - 1281
  • [8] False discovery rates in spectral identification
    Kyowon Jeong
    Sangtae Kim
    Nuno Bandeira
    BMC Bioinformatics, 13
  • [9] False Discovery Rates in Biological Networks
    Yu, Lu
    Kaufmann, Tobias
    Lederer, Johannes
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 163 - +
  • [10] Evaluation of false discovery rate and power via sample size in microarray studies
    Song, Jie
    Raadsma, HermanW.
    Thomson, Peter C.
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (03) : 489 - 500