FINITE ELEMENT APPROXIMATION OF THE MODIFIED MAXWELL'S STEKLOFF EIGENVALUES

被引:5
|
作者
Gong, Bo [1 ]
Sun, Jiguang [2 ]
Wu, Xinming [3 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[3] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金;
关键词
Stekloff eigenvalue; Maxwell's equation; finite element method; tangential trace; INTEGRAL-EQUATION; REGULARITY; TRACES;
D O I
10.1137/20M1328889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The modified Maxwell's Stekloff eigenvalue problem arises recently from the inverse electromagnetic scattering theory for inhomogeneous media. This paper contains a rigorous analysis of both the eigenvalue problem and the associated source problem on Lipschitz polyhedra. A new finite element method is proposed to compute Stekloff eigenvalues. By applying the Babuska-Osborn theory, we prove an error estimate without additional regularity assumptions. Numerical results are presented for validation.
引用
收藏
页码:2430 / 2448
页数:19
相关论文
共 50 条
  • [41] Finite element approximation of the modified Boussinesq equations using a stabilized formulation
    Codina, Ramon
    Gonzalez-Ondina, Jose M.
    Diaz-Hernandez, Gabriel
    Principe, Javier
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 57 (09) : 1249 - 1268
  • [42] Improved eigenvalues for combined dynamical systems using a modified finite element discretization scheme
    Cha, Philip D.
    Zhou, Xiang
    JOURNAL OF SOUND AND VIBRATION, 2007, 305 (03) : 365 - 377
  • [43] Analysis of a finite element PML approximation for the three dimensional time-harmonic maxwell problem
    Bramble, James H.
    Pasciak, Joseph E.
    MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 1 - 10
  • [44] The finite element approximation of a 2D maxwell eigenvalue problem in a domain with curved boundaries
    Hamelinck, Wouter
    Van Keer, Roger
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 252 - +
  • [45] Mur-Nedelec finite element schemes for Maxwell's equations
    INRIA, Le Chesnay, France
    Comput Methods Appl Mech Eng, 3-4 (197-217):
  • [46] Mur-Nedelec finite element schemes for Maxwell's equations
    Cohen, G
    Monk, P
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 169 (3-4) : 197 - 217
  • [47] AN ADAPTIVE EDGE FINITE ELEMENT METHOD FOR THE MAXWELL'S EQUATIONS IN METAMATERIALS
    Wang, Hao
    Yang, Wei
    Huang, Yunqing
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 961 - 976
  • [48] ADAPTIVE HYBRID FINITE ELEMENT/DIFFERENCE METHOD FOR MAXWELL'S EQUATIONS
    Beilina, Larisa
    Grote, Marcus J.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 1 (02): : 176 - 197
  • [49] Mixed Finite Element Methods for the Maxwell's Equations with Matrix Parameters
    Anees, Asad
    Angermann, Lutz
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [50] A time-domain finite element method for Maxwell's equations
    Van, T
    Wood, AH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) : 1592 - 1609