FINITE ELEMENT APPROXIMATION OF THE MODIFIED MAXWELL'S STEKLOFF EIGENVALUES

被引:5
|
作者
Gong, Bo [1 ]
Sun, Jiguang [2 ]
Wu, Xinming [3 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[3] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金;
关键词
Stekloff eigenvalue; Maxwell's equation; finite element method; tangential trace; INTEGRAL-EQUATION; REGULARITY; TRACES;
D O I
10.1137/20M1328889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The modified Maxwell's Stekloff eigenvalue problem arises recently from the inverse electromagnetic scattering theory for inhomogeneous media. This paper contains a rigorous analysis of both the eigenvalue problem and the associated source problem on Lipschitz polyhedra. A new finite element method is proposed to compute Stekloff eigenvalues. By applying the Babuska-Osborn theory, we prove an error estimate without additional regularity assumptions. Numerical results are presented for validation.
引用
收藏
页码:2430 / 2448
页数:19
相关论文
共 50 条