A semiparametric approach for joint modeling of median and skewness

被引:23
|
作者
Hernando Vanegas, Luis [1 ,2 ]
Paula, Gilberto A. [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Univ Nacl Colombia, Dept Estadist, Bogota, Colombia
基金
巴西圣保罗研究基金会;
关键词
Skewness; Asymmetric responses; Maximum penalized likelihood estimates; Semiparametric models; Robust estimates; Natural cubic spline; BIRNBAUM-SAUNDERS DISTRIBUTION; SYMMETRICAL NONLINEAR MODELS; NORMAL-DISTRIBUTIONS; REGRESSION-MODELS; SCALE MIXTURES; MAXIMUM-LIKELIHOOD; ADDITIVE-MODELS; LOCAL INFLUENCE; T DISTRIBUTION; DIAGNOSTICS;
D O I
10.1007/s11749-014-0401-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We motivate this paper by showing through Monte Carlo simulation that ignoring the skewness of the response variable distribution in non-linear regression models may introduce biases on the parameter estimates and/or on the estimation of the associated variability measures. Then, we propose a semiparametric regression model suitable for data set analysis in which the distribution of the response is strictly positive and asymmetric. In this setup, both median and skewness of the response variable distribution are explicitly modeled, the median using a parametric non-linear function and the skewness using a semiparametric function. The proposed model allows for the description of the response using the log-symmetric distribution, which is a generalization of the log-normal distribution and is flexible enough to consider bimodal distributions in special cases as well as distributions having heavier or lighter tails than those of the log-normal one. An iterative estimation process as well as some diagnostic methods are derived. Two data sets previously analyzed under parametric models are reanalyzed using the proposed methodology.
引用
收藏
页码:110 / 135
页数:26
相关论文
共 50 条
  • [31] A semiparametric approach to modeling nonlinear relations among latent variables
    Bauer, DJ
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2005, 12 (04) : 513 - 535
  • [32] A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models
    Xin-Yuan Song
    Zhao-Hua Lu
    Jing-Heng Cai
    Edward Hak-Sing Ip
    Psychometrika, 2013, 78 : 624 - 647
  • [33] Bayesian semiparametric joint modeling of a count outcome and inconveniently timed longitudinal predictors
    Lim, Woobeen
    Pennell, Michael L.
    Naughton, Michelle J.
    Paskett, Electra D.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (05) : 853 - 867
  • [34] Modeling skewness in portfolio choice
    Le, Trung H.
    Kourtis, Apostolos
    Markellos, Raphael
    JOURNAL OF FUTURES MARKETS, 2023, 43 (06) : 734 - 770
  • [35] The role of skewness in GARCH modeling
    Fang, Libing
    Kuo, Bingshen
    Zeng, Yong
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2009, : 522 - 528
  • [36] Modeling Skewness in Human Transcriptomes
    Casellas, Joaquim
    Varona, Luis
    PLOS ONE, 2012, 7 (06):
  • [37] Modeling Skewness in Vulnerability Discovery
    Joh, HyunChul
    Malaiya, Yashwant K.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2014, 30 (08) : 1445 - 1459
  • [38] Fully semiparametric Bayesian approach for modeling survival data with cure fraction
    Demarqui, Fabio N.
    Dey, Dipak K.
    Loschi, Rosangela H.
    Colosimo, Enrico A.
    BIOMETRICAL JOURNAL, 2014, 56 (02) : 198 - 218
  • [39] Bayesian semiparametric joint modeling of longitudinal explanatory variables of mixed types and a binary outcome
    Lim, Woobeen
    Pennell, Michael L.
    Naughton, Michelle J.
    Paskett, Electra D.
    STATISTICS IN MEDICINE, 2022, 41 (01) : 17 - 36
  • [40] Mining Massive Amounts of Genomic Data: A Semiparametric Topic Modeling Approach
    Fang, Ethan X.
    Li, Min-Dian
    Jordan, Michael I.
    Liu, Han
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (519) : 921 - 932