A semiparametric approach for joint modeling of median and skewness

被引:23
|
作者
Hernando Vanegas, Luis [1 ,2 ]
Paula, Gilberto A. [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Univ Nacl Colombia, Dept Estadist, Bogota, Colombia
基金
巴西圣保罗研究基金会;
关键词
Skewness; Asymmetric responses; Maximum penalized likelihood estimates; Semiparametric models; Robust estimates; Natural cubic spline; BIRNBAUM-SAUNDERS DISTRIBUTION; SYMMETRICAL NONLINEAR MODELS; NORMAL-DISTRIBUTIONS; REGRESSION-MODELS; SCALE MIXTURES; MAXIMUM-LIKELIHOOD; ADDITIVE-MODELS; LOCAL INFLUENCE; T DISTRIBUTION; DIAGNOSTICS;
D O I
10.1007/s11749-014-0401-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We motivate this paper by showing through Monte Carlo simulation that ignoring the skewness of the response variable distribution in non-linear regression models may introduce biases on the parameter estimates and/or on the estimation of the associated variability measures. Then, we propose a semiparametric regression model suitable for data set analysis in which the distribution of the response is strictly positive and asymmetric. In this setup, both median and skewness of the response variable distribution are explicitly modeled, the median using a parametric non-linear function and the skewness using a semiparametric function. The proposed model allows for the description of the response using the log-symmetric distribution, which is a generalization of the log-normal distribution and is flexible enough to consider bimodal distributions in special cases as well as distributions having heavier or lighter tails than those of the log-normal one. An iterative estimation process as well as some diagnostic methods are derived. Two data sets previously analyzed under parametric models are reanalyzed using the proposed methodology.
引用
收藏
页码:110 / 135
页数:26
相关论文
共 50 条
  • [1] A semiparametric approach for joint modeling of median and skewness
    Luis Hernando Vanegas
    Gilberto A. Paula
    TEST, 2015, 24 : 110 - 135
  • [2] Modeling joint, hidden volatility processes: A semiparametric approach
    Bolviken, E
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (01): : 165 - 166
  • [3] Bayesian semiparametric median regression modeling
    Kottas, A
    Gelfand, AE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1458 - 1468
  • [4] Bayesian semiparametric modeling for HIV longitudinal data with censoring and skewness
    Castro, Luis M.
    Wang, Wan-Lun
    Lachos, Victor H.
    de Carvalho, Vanda Inacio
    Bayes, Cristian L.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (05) : 1457 - 1476
  • [5] A semiparametric Bayesian approach for joint modeling of longitudinal trait and event time
    Das, Kiranmoy
    JOURNAL OF APPLIED STATISTICS, 2016, 43 (15) : 2850 - 2865
  • [6] Joint Modeling of Survival and Longitudinal Ordered Data Using a Semiparametric Approach
    Preedalikit, Kemmawadee
    Liu, Ivy
    Hirose, Yuichi
    Sibanda, Nokuthaba
    Fernandez, Daniel
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2016, 58 (02) : 153 - 172
  • [7] A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data
    Song, X
    Davidian, M
    Tsiatis, AA
    BIOMETRICS, 2002, 58 (04) : 742 - 753
  • [8] A semiparametric panel approach to mortality modeling
    Li, Han
    O'Hare, Colin
    Zhang, Xibin
    INSURANCE MATHEMATICS & ECONOMICS, 2015, 61 : 264 - 270
  • [9] Effect of Trajectories of Glycemic Control on Mortality in Type 2 Diabetes: A Semiparametric Joint Modeling Approach
    Gebregziabher, Mulugeta
    Egede, Leonard E.
    Lynch, Cheryl P.
    Echols, Carrae
    Zhao, Yumin
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2010, 171 (10) : 1090 - 1098
  • [10] A Semiparametric Approach for Modeling Not-Reached Items
    List, Marit Kristine
    Koeller, Olaf
    Nagy, Gabriel
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2019, 79 (01) : 170 - 199