RECOGNIZING GENERALIZED SIERPINSKI GRAPHS

被引:2
|
作者
Imrich, Wilfried [1 ]
Peterin, Iztok [2 ]
机构
[1] Univ Leoben, Franz Josef Str 18, A-8700 Leoben, Austria
[2] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska 46, Maribor 2000, Slovenia
关键词
Sierpinski graphs; generalized Sierpinski graphs; algorithm; METRIC PROPERTIES; ISOMORPHISM; ALGORITHM; INDEX; TOWER;
D O I
10.2298/AADM180331003I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be an arbitrary graph with vertex set V(H) = [n(H)] = {1, ..., n(H)}. The generalized Sierpinski graph S-H(n) , n is an element of N, is defined on the vertex set [n(H)](n), two different vertices u = u(n) ...u(1) and v = v(n) ... v(1) being adjacent if there exists an h is an element of [n] such that (a) u(t) = v(t), for t > h, (b) u(h) not equal v(h) and u(h)v(h) is an element of E(H), and (c) u(t) = v(h) and v(t) = u(h) for t < h. If H is the complete graph K-k, then we speak of the Sierpinski graph S-k(n). We present an algorithm that recognizes Sierpinski graphs S-k(n) in O(vertical bar V(S-k(n))vertical bar(1+1/n) = O(vertical bar E(S-k(n))vertical bar) time. For generalized Sierpinski graphs S-H(n) we present a polynomial time algorithm for the case when H belong to a certain well defined class of graphs. We also describe how to derive the base graph H from an arbitrarily given S-H(n).
引用
收藏
页码:122 / 137
页数:16
相关论文
共 50 条
  • [31] Coloring Hanoi and Sierpinski graphs
    Hinz, Andreas M.
    Parisse, Daniele
    DISCRETE MATHEMATICS, 2012, 312 (09) : 1521 - 1535
  • [32] Shortest paths in Sierpinski graphs
    Xue, Bing
    Zuo, Liancui
    Wang, Guanghui
    Li, Guojun
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 314 - 321
  • [33] Covering codes in Sierpinski graphs
    Beaudou, Laurent
    Gravier, Sylvain
    Klavzar, Sandi
    Kovse, Matjaz
    Mollard, Michel
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2010, 12 (03):
  • [34] The Average Eccentricity of Sierpinski Graphs
    Hinz, Andreas M.
    Parisse, Daniele
    GRAPHS AND COMBINATORICS, 2012, 28 (05) : 671 - 686
  • [35] Peg solitaire game on Sierpinski graphs
    Akyar, Handan
    Cakmak, Nazlican
    Torun, Nilay
    Akyar, Fmrah
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2249 - 2258
  • [36] Italian domination on Mycielskian and Sierpinski graphs
    Varghese, Jismy
    Lakshmanan, S. Aparna
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (04)
  • [37] Sierpinski gasket graphs and some of their properties
    Teguia, Alberto M.
    Godbole, Anant P.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 181 - 192
  • [38] On the Sombor Index of Sierpinski and Mycielskian Graphs
    Chanda, Surabhi
    Iyer, Radha R.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2025, 10 (01) : 20 - 56
  • [39] Uniform spanning trees on Sierpinski graphs
    Shinoda, Masato
    Teufl, Elmar
    Wagner, Stephan
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 11 (02): : 737 - 780
  • [40] The Tutte polynomial of the Sierpinski and Hanoi graphs
    Donno, Alfredo
    Iacono, Donatella
    ADVANCES IN GEOMETRY, 2013, 13 (04) : 663 - 694