RECOGNIZING GENERALIZED SIERPINSKI GRAPHS

被引:2
|
作者
Imrich, Wilfried [1 ]
Peterin, Iztok [2 ]
机构
[1] Univ Leoben, Franz Josef Str 18, A-8700 Leoben, Austria
[2] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska 46, Maribor 2000, Slovenia
关键词
Sierpinski graphs; generalized Sierpinski graphs; algorithm; METRIC PROPERTIES; ISOMORPHISM; ALGORITHM; INDEX; TOWER;
D O I
10.2298/AADM180331003I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be an arbitrary graph with vertex set V(H) = [n(H)] = {1, ..., n(H)}. The generalized Sierpinski graph S-H(n) , n is an element of N, is defined on the vertex set [n(H)](n), two different vertices u = u(n) ...u(1) and v = v(n) ... v(1) being adjacent if there exists an h is an element of [n] such that (a) u(t) = v(t), for t > h, (b) u(h) not equal v(h) and u(h)v(h) is an element of E(H), and (c) u(t) = v(h) and v(t) = u(h) for t < h. If H is the complete graph K-k, then we speak of the Sierpinski graph S-k(n). We present an algorithm that recognizes Sierpinski graphs S-k(n) in O(vertical bar V(S-k(n))vertical bar(1+1/n) = O(vertical bar E(S-k(n))vertical bar) time. For generalized Sierpinski graphs S-H(n) we present a polynomial time algorithm for the case when H belong to a certain well defined class of graphs. We also describe how to derive the base graph H from an arbitrarily given S-H(n).
引用
收藏
页码:122 / 137
页数:16
相关论文
共 50 条
  • [21] Sharp bounds on certain degree based topological indices for generalized Sierpinski graphs
    Imran, Muhammad
    Jamil, Muhammad Kamran
    CHAOS SOLITONS & FRACTALS, 2020, 132
  • [22] Generalized Graph Clustering: Recognizing (p, q)-Cluster Graphs
    Heggernes, Pinar
    Lokshtanov, Daniel
    Nederlof, Jesper
    Paul, Christophe
    Telle, Jan Arne
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 6410 : 171 - +
  • [23] Recognizing Generalized Transmission Graphs of Line Segments and Circular Sectors
    Klost, Katharina
    Mulzer, Wolfgang
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 683 - 696
  • [24] GENERALIZED SIERPINSKI NUMBERS
    Filaseta, Michael
    Groth, Robert
    Luckner, Thomas
    COLLOQUIUM MATHEMATICUM, 2023, 174 (02) : 191 - 201
  • [25] Generalized problem of Sierpinski
    Sylvain, NF
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1998, (06): : 56 - 57
  • [26] Coloring the Square of Sierpinski Graphs
    Xue, Bing
    Zuo, Liancui
    Li, Guojun
    GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1795 - 1805
  • [27] Intruder capture in sierpinski graphs
    Luccio, Flaminia L.
    FUN WITH ALGORITHMS, PROCEEDINGS, 2007, 4475 : 249 - 261
  • [28] Broadcasting in Sierpinski gasket graphs
    Shanthakumari, A.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 92 : 111 - 119
  • [29] Properties of Sierpinski Triangle Graphs
    Bickle, Allan
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 295 - 303
  • [30] TOPOLOGICAL INDICES OF SIERPINSKI GASKET AND SIERPINSKI GASKET RHOMBUS GRAPHS
    Padmapriya, P.
    Mathad, Veena
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 136 - 148