RECOGNIZING GENERALIZED SIERPINSKI GRAPHS

被引:2
|
作者
Imrich, Wilfried [1 ]
Peterin, Iztok [2 ]
机构
[1] Univ Leoben, Franz Josef Str 18, A-8700 Leoben, Austria
[2] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska 46, Maribor 2000, Slovenia
关键词
Sierpinski graphs; generalized Sierpinski graphs; algorithm; METRIC PROPERTIES; ISOMORPHISM; ALGORITHM; INDEX; TOWER;
D O I
10.2298/AADM180331003I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be an arbitrary graph with vertex set V(H) = [n(H)] = {1, ..., n(H)}. The generalized Sierpinski graph S-H(n) , n is an element of N, is defined on the vertex set [n(H)](n), two different vertices u = u(n) ...u(1) and v = v(n) ... v(1) being adjacent if there exists an h is an element of [n] such that (a) u(t) = v(t), for t > h, (b) u(h) not equal v(h) and u(h)v(h) is an element of E(H), and (c) u(t) = v(h) and v(t) = u(h) for t < h. If H is the complete graph K-k, then we speak of the Sierpinski graph S-k(n). We present an algorithm that recognizes Sierpinski graphs S-k(n) in O(vertical bar V(S-k(n))vertical bar(1+1/n) = O(vertical bar E(S-k(n))vertical bar) time. For generalized Sierpinski graphs S-H(n) we present a polynomial time algorithm for the case when H belong to a certain well defined class of graphs. We also describe how to derive the base graph H from an arbitrarily given S-H(n).
引用
收藏
页码:122 / 137
页数:16
相关论文
共 50 条
  • [1] ON GENERALIZED SIERPINSKI GRAPHS
    Alberto Rodriguez-Velazquez, Juan
    David Rodriguez-Bazan, Erick
    Estrada-Moreno, Alejandro
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 547 - 560
  • [2] ON DISTANCES IN GENERALIZED SIERPINSKI GRAPHS
    Estrada-Moreno, Alejandro
    Rodriguez-Bazan, Erick D.
    Rodriguez-Velazquez, Juan A.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (01) : 49 - 69
  • [3] Domination parameters of generalized Sierpinski graphs
    Varghese, Jismy
    Anu, V
    Aparna, Lakshmanan S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 4 - 10
  • [4] Total coloring of generalized Sierpinski graphs
    Geetha, J.
    Somasundaram, K.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2015, 63 : 58 - 69
  • [5] Packing coloring of generalized Sierpinski graphs
    Korze, Danilo
    Vesel, Aleksander
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (03):
  • [6] Packing coloring of generalized Sierpinski ´ graphs
    Korže, Danilo
    Vesel, Aleksander
    Discrete Mathematics and Theoretical Computer Science, 2019, 21 (03):
  • [7] On the Roman Domination Number of Generalized Sierpinski Graphs
    Ramezani, F.
    Rodriguez-Bazan, E. D.
    Rodriguez-Velazquez, J. A.
    FILOMAT, 2017, 31 (20) : 6515 - 6528
  • [8] ON THE ZERO FORCING NUMBER OF GENERALIZED SIERPINSKI GRAPHS
    Vatandoost, Ebrahim
    Ramezani, Fatemeh
    Alikhani, Saeid
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (01) : 41 - 50
  • [9] CONNECTIVITY AND SOME OTHER PROPERTIES OF GENERALIZED SIERPINSKI GRAPHS
    Klavzar, Sandi
    Zemljic, Sara Sabrina
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2018, 12 (02) : 401 - 412
  • [10] The double Roman domination number of generalized Sierpinski graphs
    Anu, V
    Lakshmanan, S. Aparna
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (04)