Enhancing CMOS Using Nanoelectronic Devices: A Perspective on Hybrid Integrated Systems

被引:4
|
作者
Ricketts, David S. [1 ]
Bain, James A. [1 ]
Luo, Yi [1 ]
Blanton, Ronald DeShawn [1 ]
Mai, Kenneth [1 ]
Fedder, Gary K. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
Complementary metal-oxide-semiconductor (CMOS); memory; nanoimprint; nanotechnology; parallel fabrication; reconfigurable circuits; scanning probe microscopy; self-evolving systems; ROOM-TEMPERATURE; IMPRINT LITHOGRAPHY; NANOWIRE ARRAYS; TOGGLE MRAM; ELECTRON; SRAM; MAGNETORESISTANCE; JUNCTIONS; MILLIPEDE; PATTERNS;
D O I
10.1109/JPROC.2010.2064270
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a vision for the cointegration of deeply scaled complementary metal-oxide-semiconductor (CMOS) and emerging nanoelectronic devices into CMOS-hybrid systems. These hybrid systems will create new functionality, modality and add value to existing CMOS integrated circuits. We describe several new nanoelectronic devices which may enable new dimensions to traditional CMOS circuits and systems that build on CMOS compatible, parallel nanoscale fabrication methods. In addition, we show that the integration of multimodal sensors and nonvolatile memory enables a platform of self-evolving hardware that is able to adapt to fabrication variation, environmental changes, and applications changes on-the-fly.
引用
收藏
页码:2061 / 2075
页数:15
相关论文
共 50 条
  • [11] Integrated nanoelectronic-photonic devices and bioresorbable materials
    John A. Rogers
    Nano Research, 2021, 14 : 2885 - 2887
  • [12] Variability Analysis of a Hybrid CMOS/RS Nanoelectronic Calibration Circuit
    Heittmann, Arne
    Noll, Tobias G.
    2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 1656 - 1659
  • [13] Label-Free Attomolar Detection of Proteins Using Integrated Nanoelectronic and Electrokinetic Devices
    Gong, Jian-Ru
    SMALL, 2010, 6 (08) : 967 - 973
  • [14] A monolithically integrated CMOS labchip using sensor devices
    Schaefer, H.
    Schoeler, L.
    Seibel, K.
    Boehm, M.
    APPLIED SURFACE SCIENCE, 2008, 255 (03) : 646 - 648
  • [15] The design of highly-parallel image processing systems using nanoelectronic devices
    Fountain, TJ
    CAMP'97 - FOURTH IEEE INTERNATIONAL WORKSHOP ON COMPUTER ARCHITECTURE FOR MACHINE PERCEPTION, PROCEEDINGS, 1997, : 210 - 219
  • [16] Carbon Nanotube Interconnects for Nanoelectronic Integrated Systems
    Nogueira, C. P. S. M.
    Guimaraes, J. G.
    IEEE LATIN AMERICA TRANSACTIONS, 2017, 15 (05) : 813 - 818
  • [17] The use of nanoelectronic devices in highly parallel computing systems
    Fountain, TJ
    Duff, MJB
    Crawley, DG
    Tomlinson, CD
    Moffat, CD
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 1998, 6 (01) : 31 - 38
  • [18] Revolutionary Nanoelectronic Devices and Processes for Post 32nm CMOS Era
    Nishi, Yoshio
    ADVANCED GATE STACK, SOURCE/DRAIN, AND CHANNEL ENGINEERING FOR SI-BASED CMOS 5: NEW MATERIALS, PROCESSES, AND EQUIPMENT, 2009, 19 (01): : 3 - 14
  • [19] Computational perspective on recent advances in quantum electronics: from electron quantum optics to nanoelectronic devices and systems
    Weinbub, Josef
    Kosik, Robert
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (16)
  • [20] Few electron devices: Towards hybrid CMOS-SET integrated circuits
    Ionescu, AM
    Declercq, MJ
    Mahapatra, S
    Banerjee, K
    Gautier, J
    39TH DESIGN AUTOMATION CONFERENCE, PROCEEDINGS 2002, 2002, : 88 - 93