Strong Comparison Principle for the Fractional p-Laplacian and Applications to Starshaped Rings

被引:29
|
作者
Jarohs, Sven [1 ]
机构
[1] Goethe Univ, Frankfurt, Germany
关键词
Fractional p-Laplacian; Strong Comparison Principle; Starshaped Superlevel Sets;
D O I
10.1515/ans-2017-6039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the following, we show the strong comparison principle for the fractional p-Laplacian, i.e. we analyze {(-Delta)(p)(s)v + q(x)vertical bar v vertical bar(p-2) v >= 0 in D, (-Delta(s)(p)w + q(x)vertical bar w vertical bar(p-2) w <= 0 in D, v >= w in R-N, where s is an element of (0, 1), p > 1, D subset of R-N is an open set, and q is an element of L-infinity (R-N) is a nonnegative function. Under suitable conditions on s, p and some regularity assumptions on v, w, we show that either v w in R-N or v > w in D. Moreover, we apply this result to analyze the geometry of nonnegative solutions in starshaped rings and in the half space.
引用
收藏
页码:691 / 704
页数:14
相关论文
共 50 条
  • [31] Fractional p-Laplacian evolution equations
    Mazon, Jose M.
    Rossi, Julio D.
    Toledo, Julian
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (06): : 810 - 844
  • [32] On Fractional p-Laplacian Equations at Resonance
    Bui Quoc Hung
    Hoang Quoc Toan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1273 - 1288
  • [33] The parabolic p-Laplacian with fractional differentiability
    Breit, Dominic
    Diening, Lars
    Storn, Johannes
    Wichmann, Joern
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (03) : 2110 - 2138
  • [34] The second eigenvalue of the fractional p-Laplacian
    Brasco, Lorenzo
    Parini, Enea
    ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (04) : 323 - 355
  • [35] EXISTENCE, NONEXISTENCE AND ANTIMAXIMUM PRINCIPLE FOR THE P-LAPLACIAN
    FLECKINGER, J
    GOSSEZ, JP
    TAKAC, P
    DETHELIN, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (06): : 731 - 734
  • [36] On the antimaximum principle for the p-Laplacian with indefinite weight
    Godoy, T
    Gossez, JP
    Paczka, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (03) : 449 - 467
  • [37] Strong convergence of the gradients for p-Laplacian problems as p → ∞
    Buccheri, Stefano
    Leonori, Tommaso
    Rossi, Julio D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (01)
  • [38] Multiplicity for fractional differential equations with p-Laplacian
    Tian, Yuansheng
    Wei, Yongfang
    Sun, Sujing
    BOUNDARY VALUE PROBLEMS, 2018,
  • [39] Spectral Stability for the Peridynamic Fractional p-Laplacian
    Bellido, Jose C.
    Ortega, Alejandro
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S253 - S276
  • [40] On a Fractional p-Laplacian Problem with Discontinuous Nonlinearities
    Hanaâ Achour
    Sabri Bensid
    Mediterranean Journal of Mathematics, 2021, 18