Strong Comparison Principle for the Fractional p-Laplacian and Applications to Starshaped Rings

被引:29
|
作者
Jarohs, Sven [1 ]
机构
[1] Goethe Univ, Frankfurt, Germany
关键词
Fractional p-Laplacian; Strong Comparison Principle; Starshaped Superlevel Sets;
D O I
10.1515/ans-2017-6039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the following, we show the strong comparison principle for the fractional p-Laplacian, i.e. we analyze {(-Delta)(p)(s)v + q(x)vertical bar v vertical bar(p-2) v >= 0 in D, (-Delta(s)(p)w + q(x)vertical bar w vertical bar(p-2) w <= 0 in D, v >= w in R-N, where s is an element of (0, 1), p > 1, D subset of R-N is an open set, and q is an element of L-infinity (R-N) is a nonnegative function. Under suitable conditions on s, p and some regularity assumptions on v, w, we show that either v w in R-N or v > w in D. Moreover, we apply this result to analyze the geometry of nonnegative solutions in starshaped rings and in the half space.
引用
收藏
页码:691 / 704
页数:14
相关论文
共 50 条
  • [21] On the strong maximum principle for a fractional Laplacian
    Trong, Nguyen Ngoc
    Tan, Do Duc
    Thanh, Bui Le Trong
    ARCHIV DER MATHEMATIK, 2021, 117 (02) : 203 - 213
  • [22] Maximum and anti-maximum principle for the fractional p-Laplacian with indefinite weights
    Asso, Oumarou
    Cuesta, Mabel
    Doumate, Jonas T.
    Leadi, Liamidi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 529 (01)
  • [23] Starshapedness of the superlevel sets of solutions to equations involving the fractional Laplacian in starshaped rings
    Jarohs, Sven
    Kulczycki, Tadeusz
    Salani, Paolo
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (05) : 1008 - 1021
  • [24] Limit problems for a Fractional p-Laplacian as p → ∞
    Ferreira, Raul
    Perez-Llanos, Mayte
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02):
  • [25] On the logistic equation for the fractional p-Laplacian
    Iannizzotto, Antonio
    Mosconi, Sunra
    Papageorgiou, Nikolaos S. S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) : 1451 - 1468
  • [26] ON FRACTIONAL p-LAPLACIAN PROBLEMS WITH WEIGHT
    Lehrer, Raquel
    Maia, Liliane A.
    Squassina, Marco
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (1-2) : 15 - 28
  • [27] Higher differentiability for the fractional p-Laplacian
    Diening, Lars
    Kim, Kyeongbae
    Lee, Ho-Sik
    Nowak, Simon
    MATHEMATISCHE ANNALEN, 2024, : 5631 - 5693
  • [28] EIGENVALUES HOMOGENIZATION FOR THE FRACTIONAL p-LAPLACIAN
    Martin Salort, Ariel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [29] On Fractional p-Laplacian Equations at Resonance
    Bui Quoc Hung
    Hoang Quoc Toan
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1273 - 1288
  • [30] The sliding methods for the fractional p-Laplacian
    Wu, Leyun
    Chen, Wenxiong
    ADVANCES IN MATHEMATICS, 2020, 361