Strong Comparison Principle for the Fractional p-Laplacian and Applications to Starshaped Rings

被引:29
|
作者
Jarohs, Sven [1 ]
机构
[1] Goethe Univ, Frankfurt, Germany
关键词
Fractional p-Laplacian; Strong Comparison Principle; Starshaped Superlevel Sets;
D O I
10.1515/ans-2017-6039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the following, we show the strong comparison principle for the fractional p-Laplacian, i.e. we analyze {(-Delta)(p)(s)v + q(x)vertical bar v vertical bar(p-2) v >= 0 in D, (-Delta(s)(p)w + q(x)vertical bar w vertical bar(p-2) w <= 0 in D, v >= w in R-N, where s is an element of (0, 1), p > 1, D subset of R-N is an open set, and q is an element of L-infinity (R-N) is a nonnegative function. Under suitable conditions on s, p and some regularity assumptions on v, w, we show that either v w in R-N or v > w in D. Moreover, we apply this result to analyze the geometry of nonnegative solutions in starshaped rings and in the half space.
引用
收藏
页码:691 / 704
页数:14
相关论文
共 50 条
  • [1] A strong comparison principle for the p-laplacian
    Roselli, Paolo
    Sciunzi, Berardino
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) : 3217 - 3224
  • [2] A strong comparison principle for the Dirichlet p-Laplacian
    Cuesta, M
    Takac, P
    REACTION DIFFUSION SYSTEMS, 1998, 194 : 79 - 87
  • [3] A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian
    Del Pezzo, Leandro M.
    Quaas, Alexander
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 765 - 778
  • [4] Weak Comparison Principle for Weighted Fractional p-Laplacian Equation
    Xie, Jin
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [5] The strong comparison principle in parabolic problems with the p-Laplacian in a domain
    Benedikt, Jiri
    Girg, Petr
    Kotrla, Lukas
    Takac, Peter
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 365 - 373
  • [6] Remarks on the strong maximum principle involving p-Laplacian
    Liu, Xiaojing
    Horiuchi, Toshio
    HIROSHIMA MATHEMATICAL JOURNAL, 2016, 46 (03) : 311 - 331
  • [7] A Strong Maximum Principle for parabolic equations with the p-Laplacian
    Bobkov, Vladimir E.
    Takac, Peter
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (01) : 218 - 230
  • [8] Nonlinear commutators for the fractional p-Laplacian and applications
    Armin Schikorra
    Mathematische Annalen, 2016, 366 : 695 - 720
  • [9] Nonlinear commutators for the fractional p-Laplacian and applications
    Schikorra, Armin
    MATHEMATISCHE ANNALEN, 2016, 366 (1-2) : 695 - 720
  • [10] The strong maximum principle in parabolic problems with the p-Laplacian in a domain
    Benedikt, Jiri
    Girg, Petr
    Kotrla, Lukas
    Takac, Peter
    APPLIED MATHEMATICS LETTERS, 2017, 63 : 95 - 101