Synchronization and clustering in ensembles of coupled chaotic oscillators

被引:0
|
作者
Maistrenko, Y [1 ]
Popovych, O [1 ]
Yanchuk, S [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
来源
SYNCHRONIZATION: THEORY AND APPLICATION | 2003年 / 109卷
关键词
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
When identical chaotic oscillators interact, a state of complete or partial synchronization may be attained, providing a special kind of dynamical patterns called clusters. The simplest, coherent clusters arise when all oscillators display the same temporal behavior. Others, more complicated clusters are developed when population of the oscillators splits into subgroups such that all oscillators within a given group move in synchrony. Considering a system of mean-field coupled logistic maps, we study in details the transition from coherence to clustering and demonstrate that there are four different mechanisms of the desynchronization: riddling and blowout bifurcations, appearance of symmetric and asymmetric clusters. We also investigate the cluster-splitting bifurcation when the underlying dynamics is periodic. For the system of three and four coupled Rossler oscillators, we prove the existence of clusters and describe related bifurcations and in-cluster dynamics.
引用
收藏
页码:101 / 138
页数:38
相关论文
共 50 条
  • [41] Chaotic synchronization of three coupled oscillators with ring connection
    Kyprianidis, IM
    Stouboulos, IN
    CHAOS SOLITONS & FRACTALS, 2003, 17 (2-3) : 327 - 336
  • [42] Generalized synchronization in a system of coupled klystron chaotic oscillators
    Starodubov, A. V.
    Koronovskii, A. A.
    Hramov, A. E.
    Zharkov, Yu. D.
    Dmitriev, B. S.
    TECHNICAL PHYSICS LETTERS, 2007, 33 (07) : 612 - 615
  • [43] Phase synchronization in coupled chaotic oscillators with time delay
    Chen, JY
    Wong, KW
    Shuai, JW
    PHYSICAL REVIEW E, 2002, 66 (05): : 7
  • [44] Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators
    D. D. Kulminskiy
    V. I. Ponomarenko
    M. D. Prokhorov
    A. E. Hramov
    Nonlinear Dynamics, 2019, 98 : 735 - 748
  • [45] Comment on "periodic phase synchronization in coupled chaotic oscillators"
    Pazó, D
    Matías, MA
    PHYSICAL REVIEW E, 2006, 73 (03): : 1 - 2
  • [46] From phase to lag synchronization in coupled chaotic oscillators
    Rosenblum, MG
    Pikovsky, AS
    Kurths, J
    PHYSICAL REVIEW LETTERS, 1997, 78 (22) : 4193 - 4196
  • [47] Spatiotemporal synchronization in lattices of locally coupled chaotic oscillators
    Belykh, VN
    Belykh, IV
    Nelvidin, KV
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 58 (4-6) : 477 - 492
  • [48] Synchronization and intermittency in three-coupled chaotic oscillators
    Tsukamoto, N
    Miyazaki, S
    Fujisaka, H
    PHYSICAL REVIEW E, 2003, 67 (01):
  • [49] Experimental investigation of partial synchronization in coupled chaotic oscillators
    Heisler, IA
    Braun, T
    Zhang, Y
    Hu, G
    Cerdeira, HA
    CHAOS, 2003, 13 (01) : 185 - 194
  • [50] Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling
    Wu, CW
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2003, 50 (02): : 294 - 297