Synchronization and clustering in ensembles of coupled chaotic oscillators

被引:0
|
作者
Maistrenko, Y [1 ]
Popovych, O [1 ]
Yanchuk, S [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
来源
SYNCHRONIZATION: THEORY AND APPLICATION | 2003年 / 109卷
关键词
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
When identical chaotic oscillators interact, a state of complete or partial synchronization may be attained, providing a special kind of dynamical patterns called clusters. The simplest, coherent clusters arise when all oscillators display the same temporal behavior. Others, more complicated clusters are developed when population of the oscillators splits into subgroups such that all oscillators within a given group move in synchrony. Considering a system of mean-field coupled logistic maps, we study in details the transition from coherence to clustering and demonstrate that there are four different mechanisms of the desynchronization: riddling and blowout bifurcations, appearance of symmetric and asymmetric clusters. We also investigate the cluster-splitting bifurcation when the underlying dynamics is periodic. For the system of three and four coupled Rossler oscillators, we prove the existence of clusters and describe related bifurcations and in-cluster dynamics.
引用
收藏
页码:101 / 138
页数:38
相关论文
共 50 条
  • [31] Dynamic behavior of complete synchronization of coupled chaotic oscillators
    Bao Gang
    Narenmandula
    Tubuxin
    Eredencang
    ACTA PHYSICA SINICA, 2007, 56 (04) : 1971 - 1974
  • [32] In phase and antiphase synchronization of coupled homoclinic chaotic oscillators
    Leyva, I
    Allaria, E
    Boccaletti, S
    Arecchi, FT
    CHAOS, 2004, 14 (01) : 118 - 122
  • [33] Symbolic Dynamics and Chaotic Synchronization in Coupled Duffing Oscillators
    Caneco, Acilina
    Gracio, Clara
    Rocha, J. Leonel
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 3) : 102 - 111
  • [34] Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators
    Hramov, AE
    Koronovskii, AA
    EUROPHYSICS LETTERS, 2005, 70 (02): : 169 - 175
  • [35] Cluster synchronization modes in an ensemble of coupled chaotic oscillators
    Belykh, VN
    Belykh, IV
    Mosekilde, E
    PHYSICAL REVIEW E, 2001, 63 (03): : 362161 - 362164
  • [36] Intermittent lag synchronization in a pair of coupled chaotic oscillators
    Valladares, DL
    Boccaletti, S
    Carusela, MF
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (10): : 2699 - 2704
  • [37] Generalized phase synchronization in unidirectionally coupled chaotic oscillators
    Lee, DS
    Kye, WH
    Rim, S
    Kwon, TY
    Kim, CM
    PHYSICAL REVIEW E, 2003, 67 (04):
  • [38] Symbolic Dynamics and Chaotic Synchronization in Coupled Duffing Oscillators
    Acilina Caneco
    Clara Grácio
    J Leonel Rocha
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 102 - 111
  • [39] Generalized synchronization in a system of coupled klystron chaotic oscillators
    A. V. Starodubov
    A. A. Koronovskiĭ
    A. E. Hramov
    Yu. D. Zharkov
    B. S. Dmitriev
    Technical Physics Letters, 2007, 33 : 612 - 615