Extension Theory for Braided-Enriched Fusion Categories

被引:6
|
作者
Jones, Corey [1 ]
Morrison, Scott [2 ]
Penneys, David [3 ]
Plavnik, Julia [4 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Sydney, Sydney, NSW 2006, Australia
[3] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[4] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
QUILLEN MODEL STRUCTURE; CLASSIFICATION; MODULE;
D O I
10.1093/imrn/rnab133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a braided fusion category V, a V-fusion category is a fusion category C equipped with a braided monoidal functor F : V -> Z(C). Given a fixed V-fusion category (C, F) and a fixed G-graded extension C subset of D as an ordinary fusion category, we characterize the enrichments (F) over tilde : V -> Z(D) of D that are compatible with the enrichment of C. We show that G-crossed extensions of a braided fusion category C are G-extensions of the canonical enrichment of C over itself. As an application, we parameterize the set of G-crossed braidings on a fixed G-graded fusion category in terms of certain subcategories of its center, extending Nikshych's classification of the braidings on a fusion category.
引用
收藏
页码:15632 / 15683
页数:52
相关论文
共 50 条
  • [1] Unitary braided-enriched monoidal categories
    Dell, Zachary
    Huston, Peter
    Penneys, David
    QUANTUM TOPOLOGY, 2024, 15 (3-4) : 567 - 632
  • [2] Monoidal Categories Enriched in Braided Monoidal Categories
    Morrison, Scott
    Penneys, David
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (11) : 3527 - 3579
  • [3] On braided fusion categories I
    Drinfeld, Vladimir
    Gelaki, Shlomo
    Nikshych, Dmitri
    Ostrik, Victor
    SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (01): : 1 - 119
  • [4] On braided fusion categories I
    Vladimir Drinfeld
    Shlomo Gelaki
    Dmitri Nikshych
    Victor Ostrik
    Selecta Mathematica, 2010, 16 : 1 - 119
  • [5] On the minimal extension and structure of braided weakly group-theoretical fusion categories
    Ostrik, Victor
    Yu, Zhiqiang
    ADVANCES IN MATHEMATICS, 2023, 419
  • [6] Solvability of a Class of Braided Fusion Categories
    Sonia Natale
    Julia Yael Plavnik
    Applied Categorical Structures, 2014, 22 : 229 - 240
  • [7] On Braided and Ribbon Unitary Fusion Categories
    Galindo, Cesar
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (03): : 506 - 510
  • [8] A Finiteness Property for Braided Fusion Categories
    Deepak Naidu
    Eric C. Rowell
    Algebras and Representation Theory, 2011, 14 : 837 - 855
  • [9] A Finiteness Property for Braided Fusion Categories
    Naidu, Deepak
    Rowell, Eric C.
    ALGEBRAS AND REPRESENTATION THEORY, 2011, 14 (05) : 837 - 855
  • [10] Solvability of a Class of Braided Fusion Categories
    Natale, Sonia
    Plavnik, Julia Yael
    APPLIED CATEGORICAL STRUCTURES, 2014, 22 (01) : 229 - 240