Function group approach to unconstrained Hamiltonian Yang-Mills theory

被引:1
|
作者
Salmela, A [1 ]
机构
[1] Univ Helsinki, Dept Phys Sci, Div Theoret Phys, FIN-00014 Helsinki, Finland
关键词
D O I
10.1063/1.2040327
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from the temporal gauge Hamiltonian for classical pure Yang-Mills theory with the gauge group SU(2) a canonical transformation is initiated by parametrizing the Gauss law generators with three new canonical variables. The construction of the remaining variables of the new set proceeds through a number of intermediate variables in several steps, which are suggested by the Poisson bracket relations and the gauge transformation properties of these variables. The unconstrained Hamiltonian is obtained from the original one by expressing it in the new variables and then setting the Gauss law generators to zero. This Hamiltonian turns out to be local and it decomposes into a finite Laurent series in powers of the coupling constant. (c) 2005 American Institute of Physics.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Color Coulomb potential in Yang-Mills theory from Hamiltonian flows
    Leder, Markus
    Reinhardt, Hugo
    Weber, Axel
    Pawlowski, Jan M.
    PHYSICAL REVIEW D, 2012, 86 (10):
  • [42] On the functional renormalization group approach for Yang-Mills fields
    Lavrov, Peter M.
    Shapiro, Ilya L.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (06):
  • [43] UNCONSTRAINED OFF-SHELL N=3 SUPERSYMMETRIC YANG-MILLS THEORY
    GALPERIN, A
    IVANOV, E
    KALITZIN, S
    OGIEVETSKY, V
    SOKATCHEV, E
    CLASSICAL AND QUANTUM GRAVITY, 1985, 2 (02) : 155 - 166
  • [44] Null Hamiltonian Yang-Mills theory: Soft Symmetries and Memory as Superselection
    Riello, A.
    Schiavina, M.
    ANNALES HENRI POINCARE, 2025, 26 (02): : 389 - 477
  • [45] Notes on the Hamiltonian formulation of 3D Yang-Mills theory
    Fukuma, Masafumi
    Katayama, Ken-Ichi
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (04):
  • [46] On the functional renormalization group approach for Yang-Mills fields
    Peter M. Lavrov
    Ilya L. Shapiro
    Journal of High Energy Physics, 2013
  • [47] THE BETA-FUNCTION IN SUPERSYMMETRIC YANG-MILLS THEORY
    JONES, DRT
    MEZINCESCU, L
    PHYSICS LETTERS B, 1984, 136 (04) : 242 - 244
  • [48] Complex poles and spectral function of Yang-Mills theory
    Hayashi, Yui
    Kondo, Kei-Ichi
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [49] YANG-MILLS THEORY ON A CIRCLE
    HETRICK, JE
    HOSOTANI, Y
    PHYSICS LETTERS B, 1989, 230 (1-2) : 88 - 92
  • [50] YANG-MILLS THEORY ON A CYLINDER
    RAJEEV, SG
    PHYSICS LETTERS B, 1988, 212 (02) : 203 - 205