Function group approach to unconstrained Hamiltonian Yang-Mills theory

被引:1
|
作者
Salmela, A [1 ]
机构
[1] Univ Helsinki, Dept Phys Sci, Div Theoret Phys, FIN-00014 Helsinki, Finland
关键词
D O I
10.1063/1.2040327
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from the temporal gauge Hamiltonian for classical pure Yang-Mills theory with the gauge group SU(2) a canonical transformation is initiated by parametrizing the Gauss law generators with three new canonical variables. The construction of the remaining variables of the new set proceeds through a number of intermediate variables in several steps, which are suggested by the Poisson bracket relations and the gauge transformation properties of these variables. The unconstrained Hamiltonian is obtained from the original one by expressing it in the new variables and then setting the Gauss law generators to zero. This Hamiltonian turns out to be local and it decomposes into a finite Laurent series in powers of the coupling constant. (c) 2005 American Institute of Physics.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Vacuum structure of Yang-Mills theory as a function of θ
    Aitken, Kyle
    Cherman, Aleksey
    Unsal, Mithat
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (09):
  • [22] Planar Yang-Mills theory: Hamiltonian, regulators and mass gap
    Karabali, D
    Kim, CJ
    Nair, VP
    NUCLEAR PHYSICS B, 1998, 524 (03) : 661 - 694
  • [23] GAUGE FIXING AMBIGUITIES, FLUX STRINGS, AND THE UNCONSTRAINED YANG-MILLS THEORY
    DAS, A
    KAKU, M
    TOWNSEND, PK
    NUCLEAR PHYSICS B, 1979, 149 (01) : 109 - 122
  • [24] Hamiltonian approach to 1+1 dimensional Yang-Mills theory in Coulomb gauge
    Reinhardt, H.
    Schleifenbaum, W.
    ANNALS OF PHYSICS, 2009, 324 (04) : 735 - 786
  • [25] Topological susceptibility in SU(2) Yang-Mills theory in the Hamiltonian approach in Coulomb gauge
    Campagnari, Davide R.
    Reinhardt, Hugo
    PHYSICAL REVIEW D, 2008, 78 (08):
  • [26] Yang-Mills thermodynamics: An effective theory approach
    Sasaki, C., 1600, Jagiellonian University (07):
  • [27] Topological Yang-Mills cohomology in pure Yang-Mills theory
    Accardi, A
    Belli, A
    Martellini, M
    Zeni, M
    PHYSICS LETTERS B, 1998, 431 (1-2) : 127 - 134
  • [28] Covariant variational approach to Yang-Mills theory
    Quandt, M.
    Reinhardt, H.
    Heffner, J.
    PHYSICAL REVIEW D, 2014, 89 (06):
  • [29] A Hamiltonian analysis of Yang-Mills equations
    Sniatycki, J
    REPORTS ON MATHEMATICAL PHYSICS, 1999, 44 (1-2) : 205 - 214
  • [30] INTEGRABILITY OF THE YANG-MILLS HAMILTONIAN SYSTEM
    KASPERCZUK, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1994, 58 (04): : 387 - 391