Function group approach to unconstrained Hamiltonian Yang-Mills theory

被引:1
|
作者
Salmela, A [1 ]
机构
[1] Univ Helsinki, Dept Phys Sci, Div Theoret Phys, FIN-00014 Helsinki, Finland
关键词
D O I
10.1063/1.2040327
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from the temporal gauge Hamiltonian for classical pure Yang-Mills theory with the gauge group SU(2) a canonical transformation is initiated by parametrizing the Gauss law generators with three new canonical variables. The construction of the remaining variables of the new set proceeds through a number of intermediate variables in several steps, which are suggested by the Poisson bracket relations and the gauge transformation properties of these variables. The unconstrained Hamiltonian is obtained from the original one by expressing it in the new variables and then setting the Gauss law generators to zero. This Hamiltonian turns out to be local and it decomposes into a finite Laurent series in powers of the coupling constant. (c) 2005 American Institute of Physics.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Unconstrained Hamiltonian formulation of Yang-Mills theory
    Salmela, A
    Quark Confinement and the Hadron Spectrum VI, 2005, 756 : 263 - 265
  • [2] Hamiltonian approach to Yang-Mills theory in Coulomb gauge
    Reinhardt, H.
    Epple, D.
    Schleifenbaum, W.
    QUARK CONFINEMENT AND THE HADRON SPECTRUM VII, 2007, 892 : 93 - +
  • [3] HAMILTONIAN OF THE MASSIVE YANG-MILLS THEORY
    SILVEIRA, AD
    PHYSICAL REVIEW D, 1980, 22 (06): : 1390 - 1393
  • [4] UNCONSTRAINED TEMPORAL GAUGE FOR YANG-MILLS THEORY
    GOLDSTONE, J
    JACKIW, R
    PHYSICS LETTERS B, 1978, 74 (1-2) : 81 - 84
  • [5] Perturbation theory in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge
    Campagnari, Davide R.
    Reinhardt, Hugo
    Weber, Axel
    PHYSICAL REVIEW D, 2009, 80 (02):
  • [6] Hamiltonian Approach to Yang-Mills Theory in Coulomb Gauge - Revisited
    Reinhardt, Hugo
    Campagnari, Davide R.
    Leder, Markus
    Burgio, Giuseppe
    Pawlowski, Jan M.
    Quandt, Markus
    Weber, Axel
    T(R)OPICAL QCD 2010, 2011, 1354
  • [7] Improved Hamiltonian for Minkowski Yang-Mills theory
    Moore, GD
    NUCLEAR PHYSICS B, 1996, 480 (03) : 689 - 726
  • [8] HAMILTONIAN ANALYSIS OF TOPOLOGICALLY MASSIVE YANG-MILLS THEORY
    EVENS, D
    KUNSTATTER, G
    PHYSICAL REVIEW D, 1988, 37 (02): : 435 - 440
  • [9] Hamiltonian formulation and boundary conditions in Yang-Mills theory
    Cronström, C
    ACTA PHYSICA SLOVACA, 2000, 50 (03) : 369 - 379
  • [10] A spectral approach to Yang-Mills theory
    Esposito, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (6-7): : 926 - 935