Spatio-temporal expectile regression models

被引:3
|
作者
Spiegel, Elmar [1 ,2 ]
Kneib, Thomas [1 ]
Otto-Sobotka, Fabian [3 ]
机构
[1] Univ Gottingen, Chair Stat, Humboldtallee 3, D-37073 Gottingen, Germany
[2] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, Neuherberg, Germany
[3] Carl von Ossietzky Univ Oldenburg, Dept Hlth Serv Res, Oldenburg, Germany
关键词
expectile regression; interaction terms; main effects; tensor product; P-spline; spatio; temporal model; GENERALIZED ADDITIVE-MODELS; CONFIDENCE-INTERVALS; LINEAR-MODELS; SCALE; LOCATION; SPLINES;
D O I
10.1177/1471082X19829945
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal models are becoming increasingly popular in recent regression research. However, they usually rely on the assumption of a specific parametric distribution for the response and/or homoscedastic error terms. In this article, we propose to apply semiparametric expectile regression to model spatio-temporal effects beyond the mean. Besides the removal of the assumption of a specific distribution and homoscedasticity, with expectile regression the whole distribution of the response can be estimated. For the use of expectiles, we interpret them as weighted means and estimate them by established tools of (penalized) least squares regression. The spatio-temporal effect is set up as an interaction between time and space either based on trivariate tensor product P-splines or the tensor product of a Gaussian Markov random field and a univariate P-spline. Importantly, the model can easily be split up into main effects and interactions to facilitate interpretation. The method is presented along the analysis of spatio-temporal variation of temperatures in Germany from 1980 to 2014.
引用
收藏
页码:386 / 409
页数:24
相关论文
共 50 条
  • [41] Spatio-temporal background models for outdoor surveillance
    Pless, R. (pless@cse.wustl.edu), 1600, Hindawi Publishing Corporation (2005):
  • [42] Spatio-temporal Background Models for Outdoor Surveillance
    Robert Pless
    EURASIP Journal on Advances in Signal Processing, 2005
  • [43] SPATIO-TEMPORAL MODELS OF SYNTHETIC GENETIC OSCILLATORS
    Macnamara, Cicely K.
    Chaplain, Mark A. J.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2017, 14 (01) : 249 - 262
  • [44] Study on existing spatio-temporal data models
    Zhang, Feng
    Cao, Qu-Jiang
    Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2005, 27 (06): : 530 - 534
  • [45] A framework for characterizing spatio-temporal data models
    Parent, C
    ADVANCES IN MULTIMEDIA AND DATABASES FOR THE NEW CENTURY: A SWISS/JAPANESE PERSPECTIVE, 2000, 10 : 89 - 98
  • [46] Composite dyadic models for spatio-temporal data
    Schwob, Michael R.
    Hooten, Mevin B.
    Narasimhan, Vagheesh
    BIOMETRICS, 2024, 80 (04)
  • [47] Flexible spatio-temporal stationary variogram models
    Fernández-Casal, R
    González-Manteiga, W
    Febrero-Bande, M
    STATISTICS AND COMPUTING, 2003, 13 (02) : 127 - 136
  • [48] Estimation of the trend function for spatio-temporal models
    Wang, Hongxia
    Wang, Jinde
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (05) : 567 - 588
  • [49] Literature review of spatio-temporal database models
    Pelekis, N
    Theodoulidis, B
    Kopanakis, I
    Theodoridis, Y
    KNOWLEDGE ENGINEERING REVIEW, 2004, 19 (03): : 235 - 274
  • [50] Spatio-temporal Models of Lymphangiogenesis in Wound Healing
    Bianchi, Arianna
    Painter, Kevin J.
    Sherratt, Jonathan A.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2016, 78 (09) : 1904 - 1941