Spatio-temporal expectile regression models

被引:3
|
作者
Spiegel, Elmar [1 ,2 ]
Kneib, Thomas [1 ]
Otto-Sobotka, Fabian [3 ]
机构
[1] Univ Gottingen, Chair Stat, Humboldtallee 3, D-37073 Gottingen, Germany
[2] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Inst Computat Biol, Neuherberg, Germany
[3] Carl von Ossietzky Univ Oldenburg, Dept Hlth Serv Res, Oldenburg, Germany
关键词
expectile regression; interaction terms; main effects; tensor product; P-spline; spatio; temporal model; GENERALIZED ADDITIVE-MODELS; CONFIDENCE-INTERVALS; LINEAR-MODELS; SCALE; LOCATION; SPLINES;
D O I
10.1177/1471082X19829945
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal models are becoming increasingly popular in recent regression research. However, they usually rely on the assumption of a specific parametric distribution for the response and/or homoscedastic error terms. In this article, we propose to apply semiparametric expectile regression to model spatio-temporal effects beyond the mean. Besides the removal of the assumption of a specific distribution and homoscedasticity, with expectile regression the whole distribution of the response can be estimated. For the use of expectiles, we interpret them as weighted means and estimate them by established tools of (penalized) least squares regression. The spatio-temporal effect is set up as an interaction between time and space either based on trivariate tensor product P-splines or the tensor product of a Gaussian Markov random field and a univariate P-spline. Importantly, the model can easily be split up into main effects and interactions to facilitate interpretation. The method is presented along the analysis of spatio-temporal variation of temperatures in Germany from 1980 to 2014.
引用
收藏
页码:386 / 409
页数:24
相关论文
共 50 条
  • [31] Spatio-temporal EEG models for brain interfaces
    Gonzalez-Navarro, P.
    Moghadamfalahi, M.
    Akcakaya, M.
    Erdogmus, D.
    SIGNAL PROCESSING, 2017, 131 : 333 - 343
  • [32] Spatio-Temporal Trajectory Models For Target Tracking
    Fanaswala, Mustafa
    Krishnamurthy, Vikram
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [33] Flexible spatio-temporal stationary variogram models
    Rubén Fernández-Casal
    Wenceslao González-Manteiga
    Manuel Febrero-Bande
    Statistics and Computing, 2003, 13 : 127 - 136
  • [34] Spatial autoregression and related spatio-temporal models
    Ma, CS
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 88 (01) : 152 - 162
  • [35] Editorial: Spatio-Temporal Data Models and Languages
    Stefano Spaccapietra
    GeoInformatica, 2001, 5 : 5 - 9
  • [36] Spatio-temporal Graphical Models for Extreme Events
    Yu, Hang
    Zhang, Liaofan
    Dauwels, Justin
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2032 - 2036
  • [37] On hypotheses testing for the selection of spatio-temporal models
    Antunes, Ana Monica C.
    Rao, Tata Subba
    JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (05) : 767 - 791
  • [38] Time varying spatio-temporal covariance models
    Ip, Ryan H. L.
    Li, W. K.
    SPATIAL STATISTICS, 2015, 14 : 269 - 285
  • [39] Annoyance Models for Videos with Spatio-Temporal Artifacts
    Silva, Alexandre F.
    Farias, Mylene C. Q.
    Redi, Judith A.
    2016 EIGHTH INTERNATIONAL CONFERENCE ON QUALITY OF MULTIMEDIA EXPERIENCE (QOMEX), 2016,
  • [40] Spatio-temporal Models of Lymphangiogenesis in Wound Healing
    Arianna Bianchi
    Kevin J. Painter
    Jonathan A. Sherratt
    Bulletin of Mathematical Biology, 2016, 78 : 1904 - 1941