Engineered valley-orbit splittings in quantum-confined nanostructures in silicon

被引:30
|
作者
Rahman, R. [1 ]
Verduijn, J. [2 ,3 ]
Kharche, N. [4 ]
Lansbergen, G. P. [2 ]
Klimeck, G. [5 ]
Hollenberg, L. C. L. [6 ]
Rogge, S. [2 ,3 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 CJ Delft, Netherlands
[3] Univ New S Wales, Sch Phys, Ctr Quantum Computat & Commun Technol, Sydney, NSW 2052, Australia
[4] Rensselaer Polytech Inst, Dept Phys, Computat Ctr Nanotechnol Innovat, Troy, NY 12180 USA
[5] Purdue Univ, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
[6] Univ Melbourne, Sch Phys, Ctr Quantum Computat & Commun Technol, Melbourne, Vic 3010, Australia
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 19期
基金
美国能源部; 澳大利亚研究理事会;
关键词
NEMO; 3-D; SIMULATION; TRANSPORT; ATOM; DOTS;
D O I
10.1103/PhysRevB.83.195323
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An important challenge in silicon quantum electronics in the few electron regime is the potentially small energy gap between the ground and excited orbital states in 3D quantum confined nanostructures due to the multiple valley degeneracies of the conduction band present in silicon. Understanding the "valley-orbit" (VO) gap is essential for silicon qubits, as a large VO gap prevents leakage of the qubit states into a higher dimensional Hilbert space. The VO gap varies considerably depending on quantum confinement, and can be engineered by external electric fields. In this work we investigate VO splitting experimentally and theoretically in a range of confinement regimes. We report measurements of the VO splitting in silicon quantum dot and donor devices through excited state transport spectroscopy. These results are underpinned by large-scale atomistic tight-binding calculations involving over 1 million atoms to compute VO splittings as functions of electric fields, donor depths, and surface disorder. The results provide a comprehensive picture of the range of VO splittings that can be achieved through quantum engineering.
引用
收藏
页数:5
相关论文
共 50 条
  • [22] Disorder-induced valley-orbit hybrid states in Si quantum dots
    Gamble, John King
    Eriksson, M. A.
    Coppersmith, S. N.
    Friesen, Mark
    PHYSICAL REVIEW B, 2013, 88 (03):
  • [23] Ge/SiGe quantum-confined stark modulators on silicon
    Harris, James S.
    2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 903 - +
  • [24] Detection of a Large Valley-Orbit Splitting in Silicon with Two-Donor Spectroscopy
    Roche, B.
    Dupont-Ferrier, E.
    Voisin, B.
    Cobian, M.
    Jehl, X.
    Wacquez, R.
    Vinet, M.
    Niquet, Y-M
    Sanquer, M.
    PHYSICAL REVIEW LETTERS, 2012, 108 (20)
  • [25] Coherent electrical rotations of valley states in Si quantum dots using the phase of the valley-orbit coupling
    Wu, Yue
    Culcer, Dimitrie
    PHYSICAL REVIEW B, 2012, 86 (03)
  • [26] Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings
    Freitag, Nils M.
    Chizhova, Larisa A.
    Nemes-Incze, Peter
    Woods, Colin R.
    Gorbachev, Roman V.
    Cao, Yang
    Geim, Andre K.
    Novoselov, Kostya S.
    Burgdoerfer, Joachim
    Libisch, Florian
    Morgenstern, Markus
    NANO LETTERS, 2016, 16 (09) : 5798 - 5805
  • [27] Silicon germanium device exhibits quantum-confined Stark effect
    Jones-Bey, HA
    LASER FOCUS WORLD, 2005, 41 (12): : 29 - 29
  • [28] Multifunctional properties of nanocrystalline porous silicon as a quantum-confined material
    Koshida, N
    Kojima, A
    Migita, T
    Nakajima, Y
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2002, 19 (1-2): : 285 - 289
  • [29] Observation of quantum-confined luminescence in partially oxidized porous silicon
    Amato, G
    Boarino, L
    Midellino, D
    Rossi, AM
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 2000, 80 (04): : 679 - 689
  • [30] Efficient Exciton Transport between Strongly Quantum-Confined Silicon Quantum Dots
    Lin, Zhibin
    Li, Huashan
    Franceschetti, Alberto
    Lusk, Mark T.
    ACS NANO, 2012, 6 (05) : 4029 - 4038