Comparison of automated segmentation techniques for magnetic resonance images of the prostate

被引:0
|
作者
Pepa, M. [1 ]
Isaksson, J. L. [1 ]
Zaffaroni, M. [1 ]
Summers, P. E. [2 ]
Marvaso, G. [1 ,3 ]
Lo Presti, G. [4 ]
Raimondi, S. [4 ]
Gandini, S. [4 ]
Volpe, S. [1 ,3 ]
Rojas, D. P. [1 ]
Zerini, D. [1 ]
Haron, Z. [5 ]
Pricolo, P. [2 ]
Alessi, S. [2 ]
Mistretta, F. A. [6 ]
Luzzago, S. [6 ]
Cattani, F. [7 ]
De Cobelli, O. [3 ,6 ]
Cassano, E. [8 ]
Cremonesi, M. [9 ]
Bellomi, M. [2 ,3 ]
Orecchia, R. [10 ]
Petralia, G. [2 ,3 ]
Jereczek-Fossa, B. A. [1 ,3 ]
机构
[1] IEO European Inst Oncol IRCCS, Div Radiat Oncol, Milan, Italy
[2] IEO European Inst Oncol IRCCS, Div Radiol, Milan, Italy
[3] Univ Milan, Dept Oncol & Hematooncol, Milan, Italy
[4] IEO European Inst Oncol IRCCS, Dept Expt Oncol, Mol & Pharmacoepidemiol Unit, Milan, Italy
[5] Natl Canc Inst, Radiol Dept, Putrajaya, Malaysia
[6] IEO European Inst Oncol IRCCS, Div Urol, Milan, Italy
[7] IEO European Inst Oncol IRCCS, Med Phys Unit, Milan, Italy
[8] IEO European Inst Oncol IRCCS, Div Breast Radiol, Milan, Italy
[9] IEO European Inst Oncol IRCCS, Radiat Res Unit, Milan, Italy
[10] IEO European Inst Oncol IRCCS, Sci Direct, Milan, Italy
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PD-0930
引用
收藏
页码:S772 / S773
页数:2
相关论文
共 50 条
  • [41] Validation of automated magnetic resonance image segmentation for radiation therapy planning in prostate cancer
    Kuisma, Anna
    Ranta, Iiro
    Keyrilainen, Jani
    Suilamo, Sami
    Wright, Pauliina
    Pesola, Marko
    Warner, Lizette
    Loyttyniemi, Eliisa
    Minn, Heikki
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2020, 13 : 14 - 20
  • [42] Automated snake initialization for the segmentation of the prostate in ultrasound images
    Rahnamayan, S
    Tizhoosh, HR
    Salama, MMA
    IMAGE ANALYSIS AND RECOGNITION, 2005, 3656 : 930 - 937
  • [43] Patch-based segmentation using refined multifeature for magnetic resonance prostate images
    Huang, Zhe
    Jiang, Shan
    Ding, Yabin
    Cai, Jing
    Liu, Jun
    Yang, Jun
    Yang, Zhiyong
    OPTIK, 2016, 127 (02): : 732 - 737
  • [44] Segmentation of prostate region in magnetic resonance images based on improved V-Net
    Gao M.
    Yan S.
    Song C.
    Zhu Z.
    Xie E.
    Fang B.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (02): : 226 - 233
  • [45] Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy
    Pasquier, David
    Lacornerie, Thomas
    Vermandel, Maximilien
    Rousseau, Jean
    Lartigau, Eric
    Betrouni, Nacim
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 68 (02): : 592 - 600
  • [46] Automated Calibration for Computerized Analysis of Prostate Lesions Using Pharmacokinetic Magnetic Resonance Images
    Vos, Pieter C.
    Hambrock, Thomas
    Barenstz, Jelle O.
    Huisman, Henkjan J.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT II, PROCEEDINGS, 2009, 5762 : 836 - 843
  • [47] Performance of an Automated Workflow for Magnetic Resonance Imaging of the Prostate Comparison With a Manual Workflow
    Esser, Michael
    Zinsser, Dominik
    Kuendel, Matthias
    Lingg, Andreas
    Kiefer, Berthold
    Weiland, Elisabeth
    Nikolaou, Konstantin
    Othman, Ahmed E.
    INVESTIGATIVE RADIOLOGY, 2020, 55 (05) : 277 - 284
  • [48] Automatic segmentation of thigh magnetic resonance images
    Urricelqui, Lorena
    Malanda, Armando
    Villanueva, Arantxa
    World Academy of Science, Engineering and Technology, 2009, 58 : 979 - 985
  • [49] Automatic segmentation of thigh magnetic resonance images
    Urricelqui, Lorena
    Malanda, Armando
    Villanueva, Arantxa
    World Academy of Science, Engineering and Technology, 2009, 58 : 531 - 537
  • [50] Preprocessing and segmentation of brain magnetic resonance images
    Shen, S
    Sandham, WA
    Granat, AH
    ITAB 2003: 4TH INTERNATIONAL IEEE EMBS SPECIAL TOPIC CONFERENCE ON INFORMATION TECHNOLOGY APPLICATIONS IN BIOMEDICINE, CONFERENCE PROCEEDINGS: NEW SOLUTIONS FOR NEW CHALLENGES, 2003, : 149 - 152