Equilibrated residual error estimator for edge elements

被引:0
|
作者
Braess, Dietrich [1 ]
Schoeberl, Joachim [2 ]
机构
[1] Ruhr Univ Bochum, Fac Math, D-44780 Bochum, Germany
[2] Univ Aachen, Rhein Westfal TH Aachen, Ctr Computat Engn Sci, D-52062 Aachen, Germany
关键词
a posteriori error estimates; Maxwell equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Reliable a posteriori error estimates without generic constants can be obtained by a comparison of the finite element solution with a feasible function for the dual problem. A cheap computation of such functions via equilibration is well known for scalar equations of second order. We simplify and modify the equilibration such that it can be applied to the curl-curl equation and edge elements. The construction is more involved for edge elements since the equilibration has to be performed on subsets with different dimensions. For this reason, Raviart-Thomas elements are extended in the spirit of distributions.
引用
收藏
页码:651 / 672
页数:22
相关论文
共 50 条
  • [41] A robust error estimator and a residual-free error indicator for reduced basis methods
    Chen, Yanlai
    Jiang, Jiahua
    Narayan, Akil
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (07) : 1963 - 1979
  • [42] An equilibrated a posteriori error estimator for an Interior Penalty Discontinuous Galerkin approximation of the p-Laplace problem
    Hoppe, Ronald H. W.
    Iliash, Youri
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2021, 36 (06) : 313 - 336
  • [43] Generalized Prager-Synge identity and robust equilibrated error estimators for discontinuous elements
    Cai, Zhiqiang
    He, Cuiyu
    Zhang, Shun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 398
  • [44] A posteriori error estimator for the finite elements approximation of the heat equation
    Kaouther, Ismail
    Hedi, Bel Hadj Salah
    Sassi, Ben Nasrallah
    International Journal of Heat and Technology, 2010, 28 (01) : 19 - 23
  • [45] Nanoimprint Edge Placement Error Elements and Control
    Ogusu, Makoto
    Ishida, Masaki
    Tamura, Masahiro
    Sakai, Keita
    Ito, Toshiki
    Ito, Yuto
    Kawata, Isao
    Kunugi, Hdeki
    Tamura, Shuhei
    Asano, Ryuichi
    Tanaka, Keisuke
    Yamaji, Tomohito
    NOVEL PATTERNING TECHNOLOGIES 2022, 2022, 12054
  • [46] A residual a posteriori error estimator for the finite element solution of the Helmholtz equation
    Irimie, S
    Bouillard, P
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (31) : 4027 - 4042
  • [47] A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates
    Pares, N.
    Diez, P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 : 785 - 816
  • [48] A nonconforming weak residual error estimator for elliptic partial differential equations
    Jou, J
    Liu, JL
    TAIWANESE JOURNAL OF MATHEMATICS, 1999, 3 (03): : 339 - 356
  • [49] Implicit residual error estimators for the coupling of finite elements and boundary elements
    Brink, U
    Stephan, EP
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (11) : 923 - 936
  • [50] An a-posteriori error estimator for classical linear and nonlinear finite elements
    Huerta, A
    Diez, P
    Egozcue, JJ
    NUMERICAL METHODS IN ENGINEERING '96, 1996, : 277 - 283