Equilibrated residual error estimator for edge elements

被引:0
|
作者
Braess, Dietrich [1 ]
Schoeberl, Joachim [2 ]
机构
[1] Ruhr Univ Bochum, Fac Math, D-44780 Bochum, Germany
[2] Univ Aachen, Rhein Westfal TH Aachen, Ctr Computat Engn Sci, D-52062 Aachen, Germany
关键词
a posteriori error estimates; Maxwell equations;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Reliable a posteriori error estimates without generic constants can be obtained by a comparison of the finite element solution with a feasible function for the dual problem. A cheap computation of such functions via equilibration is well known for scalar equations of second order. We simplify and modify the equilibration such that it can be applied to the curl-curl equation and edge elements. The construction is more involved for edge elements since the equilibration has to be performed on subsets with different dimensions. For this reason, Raviart-Thomas elements are extended in the spirit of distributions.
引用
收藏
页码:651 / 672
页数:22
相关论文
共 50 条
  • [31] A local error estimator using finite element residual and duality
    Choon-Yeol Lee
    KSME International Journal, 1998, 12 : 31 - 40
  • [32] A local error estimator using finite element residual and duality
    Lee, CY
    KSME INTERNATIONAL JOURNAL, 1998, 12 (01): : 31 - 40
  • [33] A residual–based error estimator for BEM–discretizations of contact problems
    C. Eck
    W.L. Wendland
    Numerische Mathematik, 2003, 95 : 253 - 282
  • [34] A residual based error estimator for the Mimetic Finite Difference method
    da Veiga, L. Beirao
    NUMERISCHE MATHEMATIK, 2008, 108 (03) : 387 - 406
  • [35] A residual based error estimator for mortar finite element discretizations
    Barbara I. Wohlmuth
    Numerische Mathematik, 1999, 84 : 143 - 171
  • [36] A residual based error estimator for mortar finite element discretizations
    Wohlmuth, BI
    NUMERISCHE MATHEMATIK, 1999, 84 (01) : 143 - 171
  • [37] A residual based error estimator using radial basis functions
    Kee, Bernard B. T.
    Liu, G. R.
    Zhang, G. Y.
    Lu, C.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2008, 44 (9-10) : 631 - 645
  • [38] An Equilibrated Error Estimator for the Multiscale Finite Element Method of a 2-D Eddy Current Problem
    Schoebinger, Markus
    Schoeberl, Joachim
    Hollaus, Karl
    IEEE TRANSACTIONS ON MAGNETICS, 2021, 57 (06)
  • [39] Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM
    Rodenas, J. J.
    Gonzalez-Estrada, O. A.
    Fuenmayor, F. J.
    Chinesta, F.
    COMPUTATIONAL MECHANICS, 2013, 52 (02) : 321 - 344
  • [40] Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM
    J. J. Ródenas
    O. A. González-Estrada
    F. J. Fuenmayor
    F. Chinesta
    Computational Mechanics, 2013, 52 : 321 - 344