Fast Context Adaptation via Meta-Learning

被引:0
|
作者
Zintgraf, Luisa [1 ]
Shiarlis, Kyriacos [1 ,2 ]
Kurin, Vitaly [1 ,2 ]
Hofmann, Katja [3 ]
Whiteson, Shimon [1 ,2 ]
机构
[1] Univ Oxford, Oxford, England
[2] Latent Logic, Oxford, England
[3] Microsoft Res, Redmond, WA USA
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose CAVIA for meta-learning, a simple extension to MAML that is less prone to meta-overfitting, easier to parallelise, and more interpretable. CAVIA partitions the model parameters into two parts: context parameters that serve as additional input to the model and are adapted on individual tasks, and shared parameters that are meta-trained and shared across tasks. At test time, only the context parameters are updated, leading to a low-dimensional task representation. We show empirically that CAVIA outperforms MAML for regression, classification, and reinforcement learning. Our experiments also high-light weaknesses in current benchmarks, in that the amount of adaptation needed in some cases is small.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Leveraging Meta-Learning To Improve Unsupervised Domain Adaptation
    Farhadi, Amirfarhad
    Sharifi, Arash
    COMPUTER JOURNAL, 2023, 67 (05): : 1838 - 1850
  • [42] MetaPan: Unsupervised Adaptation With Meta-Learning for Multispectral Pansharpening
    Wang, Dong
    Zhang, Pei
    Bai, Yunpeng
    Li, Ying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [43] Meta weight learning via model-agnostic meta-learning
    Xu, Zhixiong
    Chen, Xiliang
    Tang, Wei
    Lai, Jun
    Cao, Lei
    NEUROCOMPUTING, 2021, 432 : 124 - 132
  • [44] Edge Sparsification for Graphs via Meta-Learning
    Wan, Guihong
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 2733 - 2738
  • [45] Automatic Modulation Classification via Meta-Learning
    Hao, Xiaoyang
    Feng, Zhixi
    Yang, Shuyuan
    Wang, Min
    Jiao, Licheng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) : 12276 - 12292
  • [46] Dynamic Graph Embedding via Meta-Learning
    Mao, Yuren
    Hao, Yu
    Cao, Xin
    Fang, Yixiang
    Lin, Xuemin
    Mao, Hua
    Xu, Zhiqiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 2967 - 2979
  • [47] Incremental Object Detection via Meta-Learning
    Joseph, K. J.
    Rajasegaran, Jathushan
    Khan, Salman
    Khan, Fahad Shahbaz
    Balasubramanian, Vineeth N.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9209 - 9216
  • [48] Meta-Learning via Weighted Gradient Update
    Xu, Zhixiong
    Cao, Lei
    Chen, Xiliang
    IEEE ACCESS, 2019, 7 : 110846 - 110855
  • [49] Personalizing Dialogue Agents via Meta-Learning
    Madotto, Andrea
    Lin, Zhaojiang
    Wu, Chien-Sheng
    Fung, Pascale
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 5454 - 5459
  • [50] Automated imbalanced classification via meta-learning
    Moniz, Nuno
    Cerqueira, Vitor
    Expert Systems with Applications, 2021, 178