Fast Context Adaptation via Meta-Learning

被引:0
|
作者
Zintgraf, Luisa [1 ]
Shiarlis, Kyriacos [1 ,2 ]
Kurin, Vitaly [1 ,2 ]
Hofmann, Katja [3 ]
Whiteson, Shimon [1 ,2 ]
机构
[1] Univ Oxford, Oxford, England
[2] Latent Logic, Oxford, England
[3] Microsoft Res, Redmond, WA USA
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose CAVIA for meta-learning, a simple extension to MAML that is less prone to meta-overfitting, easier to parallelise, and more interpretable. CAVIA partitions the model parameters into two parts: context parameters that serve as additional input to the model and are adapted on individual tasks, and shared parameters that are meta-trained and shared across tasks. At test time, only the context parameters are updated, leading to a low-dimensional task representation. We show empirically that CAVIA outperforms MAML for regression, classification, and reinforcement learning. Our experiments also high-light weaknesses in current benchmarks, in that the amount of adaptation needed in some cases is small.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Tracking context changes through meta-learning
    Widmer, G
    MACHINE LEARNING, 1997, 27 (03) : 259 - 286
  • [32] Meta-Learning for Fast Adaption in Caching Networks
    Narasimha, Dheeraj
    Kalathil, Dileep
    Shakkottai, Srinivas
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024,
  • [33] Memory-augmented meta-learning on meta-path for fast adaptation cold-start recommendation
    Li, Tianyuan
    Su, Xin
    Liu, Wei
    Liang, Wei
    Hsieh, Meng-Yen
    Chen, Zhuhui
    Liu, XuChong
    Zhang, Hong
    CONNECTION SCIENCE, 2022, 34 (01) : 301 - 318
  • [34] Model-Agnostic Meta-Learning for Fast Text-Dependent Speaker Embedding Adaptation
    Lin, Weiwei
    Mak, Man-Wai
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 1866 - 1876
  • [35] Adaptation: Blessing or Curse for Higher Way Meta-Learning
    Aimen A.
    Sidheekh S.
    Ladrecha B.
    Ahuja H.
    Krishnan N.C.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1844 - 1856
  • [36] MULTI-INITIALIZATION META-LEARNING WITH DOMAIN ADAPTATION
    Chen, Zhengyu
    Wang, Donglin
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1390 - 1394
  • [37] Meta-Learning for Adaptation of Deep Optical Flow Networks
    Min, Chaerin
    Kim, Taehyun
    Lim, Jongwoo
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2144 - 2153
  • [38] Meta-Learning for Few-Shot NMT Adaptation
    Sharaf, Amr
    Hassan, Hany
    Daume, Hal, III
    NEURAL GENERATION AND TRANSLATION, 2020, : 43 - 53
  • [39] Learning to Balance Local Losses via Meta-Learning
    Yoa, Seungdong
    Jeon, Minkyu
    Oh, Youngjin
    Kim, Hyunwoo J.
    IEEE ACCESS, 2021, 9 : 130834 - 130844
  • [40] A Collaborative Learning Framework via Federated Meta-Learning
    Lin, Sen
    Yang, Guang
    Zhang, Junshan
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2020, : 289 - 299