New lower bounds for van der Waerden numbers

被引:0
|
作者
Green, Ben [1 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6RE, England
来源
FORUM OF MATHEMATICS PI | 2022年 / 10卷
关键词
D O I
10.1017/fmp.2022.12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that there is a red-blue colouring of [N] with no blue 3-term arithmetic progression and no red arithmetic progression of length e(C(log N)3/4(log log )(N))(1/)(4). Consequently, the two-colour van der Waerden number w(3, k) is bounded below by k(b(k)), where b(k) = c(log k/1og log k)(1/3). Previously it had been speculated, supported by data, that w(3, k) = O(k(2)).
引用
收藏
页数:51
相关论文
共 50 条
  • [41] van der Waerden Number on a Circle
    耿辉
    胡妍
    黄益如
    Journal of Shanghai University, 2004, (03) : 292 - 294
  • [42] Random Van der Waerden Theorem
    Zohar, Ohad
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [43] Anti-van der Waerden numbers of 3-term arithmetic progressions
    Berikkyzy, Zhanar
    Schulte, Alex
    Young, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [44] On generalized van der Waerden triples
    Landman, B
    Robertson, A
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 279 - 290
  • [45] On a generalization of the van der Waerden Theorem
    Hirschfeld, Rudi
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (02) : 617 - 621
  • [46] On functions of van der Waerden type
    Rubinstein, A. I.
    Telyakovskii, D. S.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2023, 23 (03): : 339 - 347
  • [47] Solution of the van der Waerden conjecture
    不详
    MATRIX INEQUALITIES, 2002, 1790 : 99 - 109
  • [48] ON THE EXISTENCE OF VAN DER WAERDEN TYPE NUMBERS FOR LINEAR RECURRENCE SEQUENCES WITH CONSTANT COEFFICIENTS
    Nyul, Gabor
    Rauf, Bettina
    FIBONACCI QUARTERLY, 2015, 53 (01): : 53 - 60
  • [49] TOWARDS VAN DER WAERDEN?S CONJECTURE
    Chow, Sam
    Dietmann, Rainer
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (04) : 2739 - 2785
  • [50] An infinitary polynomial van der Waerden theorem
    McCutcheon, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 86 (02) : 214 - 231