New lower bounds for van der Waerden numbers

被引:0
|
作者
Green, Ben [1 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6RE, England
来源
FORUM OF MATHEMATICS PI | 2022年 / 10卷
关键词
D O I
10.1017/fmp.2022.12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that there is a red-blue colouring of [N] with no blue 3-term arithmetic progression and no red arithmetic progression of length e(C(log N)3/4(log log )(N))(1/)(4). Consequently, the two-colour van der Waerden number w(3, k) is bounded below by k(b(k)), where b(k) = c(log k/1og log k)(1/3). Previously it had been speculated, supported by data, that w(3, k) = O(k(2)).
引用
收藏
页数:51
相关论文
共 50 条
  • [31] The 2-color relative linear Van der Waerden numbers
    Kim, Byeong Moon
    Rho, Yoomi
    COMPTES RENDUS MATHEMATIQUE, 2007, 345 (04) : 183 - 186
  • [32] Anti-van der Waerden numbers of graph products of cycles
    Miller, Joe
    Warnberg, Nathan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2023, 87 : 24 - 40
  • [33] van der Waerden and the Primes
    Alpoge, Levent
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (08): : 784 - 785
  • [34] ON A FUNCTION OF VAN DER WAERDEN
    SCHUBERT, SR
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (04): : 402 - &
  • [35] The van der Waerden complex
    Ehrenborg, Richard
    Govindaiah, Likith
    Park, Peter S.
    Readdy, Margaret
    JOURNAL OF NUMBER THEORY, 2017, 172 : 287 - 300
  • [36] Van der Waerden rings
    Remus, Dieter
    Ursul, Mihail
    TOPOLOGY AND ITS APPLICATIONS, 2017, 229 : 148 - 175
  • [37] JULIA VAN DER WAERDEN
    van der Waerden, Julia
    STRAD, 2019, 130 (1553): : 94 - 95
  • [38] A subexponential upper bound for van der Waerden numbers W(3, k)
    Schoen, Tomasz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [39] A NOTE ON THE VAN DER WAERDEN COMPLEX
    Hooper, Becky
    Van Tuyl, Adam
    MATHEMATICA SCANDINAVICA, 2019, 124 (02) : 179 - 187
  • [40] Generalisation of a proposition of van der Waerden with use on a problem of the theory of numbers.
    Rado, R
    SITZUNGSBERICHTE DER PREUSSICHEN AKADEMIE DER WISSENSCHAFTEN PHYSIKALISCH-MATHEMATISCHE KLASSE, 1933, : 589 - 596