Lie symmetries of geodesic equations and projective collineations

被引:19
|
作者
Tsamparlis, Michael [1 ]
Paliathanasis, Andronikos [1 ]
机构
[1] Univ Athens, Dept Phys, Sect Astron Astrophys Mech, Athens 15783, Greece
关键词
Geodesics; General relativity theory; Classical mechanics; Collineations; Riemannian space; Autoparallels; Lie symmetries; Projective collineations; DIFFERENTIAL-EQUATIONS; SPACES;
D O I
10.1007/s11071-010-9710-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We prove a theorem which relates the Lie symmetries of the geodesic equations in a Riemannian space with the collineations of the metric. We apply the results to Einstein spaces and spaces of constant curvature. Finally with examples we show the use of the results.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [31] Lie symmetries of magnetoacoustic gravitational wave equations
    Gadzhiev S.A.
    Badalov V.G.
    Alieva N.A.
    Russian Physics Journal, 2001, 44 (12) : 1334 - 1345
  • [32] Lie Symmetries Analysis Of The Shallow Water Equations
    Ouhadan, Abdelaziz
    El Kinani, El Hassan
    APPLIED MATHEMATICS E-NOTES, 2009, 9 : 281 - 288
  • [33] Lie point symmetries of difference equations and lattices
    Levi, D
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47): : 8507 - 8523
  • [34] On differential equations characterized by their Lie point symmetries
    Manno, Gianni
    Oliveri, Francesco
    Vitolo, Raffaele
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) : 767 - 786
  • [35] Lie symmetries and certain equations of Financial Mathematics
    Leach, Peter G. L.
    Sophocleous, Christodoulos
    GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, : 120 - 132
  • [36] Lie symmetries for integrable evolution equations on the lattice
    Levi, D
    Rodríguez, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (47): : 8303 - 8316
  • [37] LIE SYMMETRIES OF FINITE-DIFFERENCE EQUATIONS
    FLOREANINI, R
    VINET, L
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (12) : 7024 - 7042
  • [38] LIE SYMMETRIES AND THE INTEGRATION OF DIFFERENCE-EQUATIONS
    QUISPEL, GRW
    SAHADEVAN, R
    PHYSICS LETTERS A, 1993, 184 (01) : 64 - 70
  • [39] RELATED EVOLUTION-EQUATIONS AND LIE SYMMETRIES
    KALNINS, EG
    MILLER, W
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (02) : 221 - 232
  • [40] Symbolic computation and differential equations: Lie symmetries
    Carminati, J
    Vu, K
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (01) : 95 - 116