Lie symmetries of geodesic equations and projective collineations

被引:19
|
作者
Tsamparlis, Michael [1 ]
Paliathanasis, Andronikos [1 ]
机构
[1] Univ Athens, Dept Phys, Sect Astron Astrophys Mech, Athens 15783, Greece
关键词
Geodesics; General relativity theory; Classical mechanics; Collineations; Riemannian space; Autoparallels; Lie symmetries; Projective collineations; DIFFERENTIAL-EQUATIONS; SPACES;
D O I
10.1007/s11071-010-9710-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We prove a theorem which relates the Lie symmetries of the geodesic equations in a Riemannian space with the collineations of the metric. We apply the results to Einstein spaces and spaces of constant curvature. Finally with examples we show the use of the results.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [21] Lie symmetries of multidimensional difference equations
    Levi, D
    Tremblay, S
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (44): : 9507 - 9524
  • [22] Discrete Lie symmetries for difference equations
    Levi, D
    Rodríguez, MA
    GROUP THEORY AND NUMERICAL ANALYSIS, 2005, 39 : 179 - 189
  • [23] Lie symmetries for equations in conformal geometries
    Hansraj, S
    Maharaj, SD
    Msomi, AM
    Govinder, KS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (20): : 4419 - 4431
  • [24] Lie discrete symmetries of lattice equations
    Levi, D
    Rodríguez, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05): : 1711 - 1725
  • [25] Lie symmetries for systems of evolution equations
    Paliathanasis, Andronikos
    Tsamparlis, Michael
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 124 : 165 - 169
  • [26] LIE SYMMETRIES OF HIROTA BILINEAR EQUATIONS
    TAMIZHMANI, KM
    RAMANI, A
    GRAMMATICOS, B
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (10) : 2635 - 2659
  • [27] C∞-symmetries and reduction of equations without lie point symmetries
    Muriel, C
    Romero, JL
    JOURNAL OF LIE THEORY, 2003, 13 (01) : 167 - 188
  • [28] Lie symmetries, perturbation to symmetries and adiabatic invariants of Poincare equations
    Chen, XW
    Liu, CM
    Li, YM
    CHINESE PHYSICS, 2006, 15 (03): : 470 - 474
  • [29] Approximate symmetries of geodesic equations on 2-spheres
    Saifullah, K.
    Usman, K.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2010, 125 (03): : 297 - 307
  • [30] COLLINEATIONS OF PROJECTIVE MOULTON PLANES
    PIERCE, WA
    CANADIAN JOURNAL OF MATHEMATICS, 1964, 16 (04): : 637 - &