Crossed clustering method on symbolic data tables

被引:1
|
作者
Verde, R [1 ]
Lechevallier, Y [1 ]
机构
[1] Univ Naples 2, Naples, Italy
关键词
D O I
10.1007/3-540-27373-5_11
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper a crossed clustering algorithm is proposed to partitioning a set of symbolic objects in a fixed number of classes. This algorithm allows, at the same time, to determine a structure (taxonomy) on the categories of the object descriptors. This procedure is an extension of the classical simultaneous clustering algorithms, proposed on binary and contingency tables. It is based on a dynamical clustering algorithm on symbolic objects. The optimized criterion is the 0 2 distance computed between the objects description, given by modal variables (distributions) and the prototypes of the classes, described by marginal profiles of the objects set partitions. The convergence of the algorithm is guaranteed at a stationary value of the criterion, in correspondence of the best partition of the symbolic objects in r classes and the best partition of the symbolic descriptors in c groups. An application on web log data has allowed to validate the procedure and suggest it as an useful tool in the Web Usage Mining context.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [41] A Robust Prediction Method for Interval Symbolic Data
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Cysneiros, Francisco Jose A.
    2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 1019 - +
  • [42] A METHOD OF VECTOR PROCESSING FOR SHARED SYMBOLIC DATA
    KANADA, Y
    PARALLEL COMPUTING, 1993, 19 (10) : 1155 - 1175
  • [43] A data labeling method for clustering categorical data
    Cao, Fuyuan
    Liang, Jiye
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) : 2381 - 2385
  • [44] Data Reduction Method for Categorical Data Clustering
    Rendon, Erendira
    Salvador Sanchez, J.
    Garcia, Rene A.
    Abundez, Itzel
    Gutierrez, Citlalih
    Gasca, Eduardo
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2008, PROCEEDINGS, 2008, 5290 : 143 - +
  • [45] Lossless Compression of Data Tables in Mobile Devices using Co-clustering
    Han, B.
    Li, B.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2016, 11 (06) : 776 - 788
  • [46] AN APPLICATION OF DECISION DATA TABLES METHOD IN ERGONOMIC RESEARCH
    PACHOLSKI, L
    MATEJA, B
    ERGONOMICS, 1982, 25 (06) : 507 - 508
  • [47] Partitioning fuzzy clustering algorithms for mixed feature-type symbolic data
    de Carvalho, Francisco de A. T.
    Cambuim, Lucas F. S.
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1385 - 1390
  • [48] Clustering data manipulation method for ensembles
    Spencer, Matthew
    McCullagh, John
    Whitfort, Tim
    AI 2006: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4304 : 1122 - +
  • [49] Effective feature representation using symbolic approach for classification and clustering of big data
    Lavanya, P. G.
    Kouser, K.
    Suresha, Mallappa
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 173
  • [50] Genetic algorithms for symbolic clustering
    S J Coll of Engineering, Mysore, India
    Sadhana - Academy Proceedings in Engineering Sciences, 1996, 21 (pt 4): : 465 - 475