Crossed clustering method on symbolic data tables

被引:1
|
作者
Verde, R [1 ]
Lechevallier, Y [1 ]
机构
[1] Univ Naples 2, Naples, Italy
关键词
D O I
10.1007/3-540-27373-5_11
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper a crossed clustering algorithm is proposed to partitioning a set of symbolic objects in a fixed number of classes. This algorithm allows, at the same time, to determine a structure (taxonomy) on the categories of the object descriptors. This procedure is an extension of the classical simultaneous clustering algorithms, proposed on binary and contingency tables. It is based on a dynamical clustering algorithm on symbolic objects. The optimized criterion is the 0 2 distance computed between the objects description, given by modal variables (distributions) and the prototypes of the classes, described by marginal profiles of the objects set partitions. The convergence of the algorithm is guaranteed at a stationary value of the criterion, in correspondence of the best partition of the symbolic objects in r classes and the best partition of the symbolic descriptors in c groups. An application on web log data has allowed to validate the procedure and suggest it as an useful tool in the Web Usage Mining context.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [31] An optimal method for data clustering
    Linsen Xie
    Chengbo Lu
    Ying Mei
    Hong Du
    Zhihong Man
    Neural Computing and Applications, 2016, 27 : 283 - 289
  • [32] An optimal method for data clustering
    Xie, Linsen
    Lu, Chengbo
    Mei, Ying
    Du, Hong
    Man, Zhihong
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (02): : 283 - 289
  • [33] Clustering symbolic interval data based on a single adaptive Hausdorff distance
    de Carvalho, Francisco de A. T.
    Pimentel, Julio T.
    Bezerra, Lucas X. T.
    de Souza, Renata M. C. R.
    2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 253 - 257
  • [34] Fuzzy c-means clustering methods for symbolic interval data
    de Carvalho, Francisco de A. T.
    PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 423 - 437
  • [35] A New Representation of Interval Symbolic Data and Its Application in Dynamic Clustering
    Wenhua Li
    Junpeng Guo
    Ying Chen
    Minglu Wang
    Journal of Classification, 2016, 33 : 149 - 165
  • [36] Incremental Hierarchical Clustering of Stochastic Pattern-Based Symbolic Data
    Xu, Xin
    Lu, Jiaheng
    Wang, Wei
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2016, PT II, 2016, 9652 : 156 - 167
  • [37] Robust clustering algorithm for the symbolic interval-values data with outliers
    Chuang, Chen-Chia
    Tao, Chin-Wang
    Jeng, Jin-Tsong
    2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 1232 - +
  • [38] A New Representation of Interval Symbolic Data and Its Application in Dynamic Clustering
    Li, Wenhua
    Guo, Junpeng
    Chen, Ying
    Wang, Minglu
    JOURNAL OF CLASSIFICATION, 2016, 33 (01) : 149 - 165
  • [39] A new Wasserstein based distance for the hierarchical clustering of histogram symbolic data
    Irpino, Antonio
    Verde, Rosanna
    DATA SCIENCE AND CLASSIFICATION, 2006, : 185 - +
  • [40] Dissimilarity measures and divisive clustering for symbolic multimodal-valued data
    Kim, Jaejik
    Billard, L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (09) : 2795 - 2808