Crossed clustering method on symbolic data tables

被引:1
|
作者
Verde, R [1 ]
Lechevallier, Y [1 ]
机构
[1] Univ Naples 2, Naples, Italy
关键词
D O I
10.1007/3-540-27373-5_11
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper a crossed clustering algorithm is proposed to partitioning a set of symbolic objects in a fixed number of classes. This algorithm allows, at the same time, to determine a structure (taxonomy) on the categories of the object descriptors. This procedure is an extension of the classical simultaneous clustering algorithms, proposed on binary and contingency tables. It is based on a dynamical clustering algorithm on symbolic objects. The optimized criterion is the 0 2 distance computed between the objects description, given by modal variables (distributions) and the prototypes of the classes, described by marginal profiles of the objects set partitions. The convergence of the algorithm is guaranteed at a stationary value of the criterion, in correspondence of the best partition of the symbolic objects in r classes and the best partition of the symbolic descriptors in c groups. An application on web log data has allowed to validate the procedure and suggest it as an useful tool in the Web Usage Mining context.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [1] An algebraic method for compressing symbolic data tables
    Tzitzikas, Yannis
    INTELLIGENT DATA ANALYSIS, 2006, 10 (04) : 343 - 359
  • [2] Fuzzy clustering for symbolic data
    El-Sonbaty, Y
    Ismail, MA
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1998, 6 (02) : 195 - 204
  • [3] Clustering constrained symbolic data
    de Carvalho, Francisco de A. T.
    Csernel, Marc
    Lechevallier, Yves
    PATTERN RECOGNITION LETTERS, 2009, 30 (11) : 1037 - 1045
  • [4] A Kernel K-means Clustering Method for Symbolic Interval Data
    Costa, Anderson F. B. F.
    Pimentel, Bruno A.
    de Souza, Renata M. C. R.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [5] A dynamic clustering method for mixed feature-type symbolic data
    de Souza, Renata M. C. R.
    de Carvalho, Francisco de A. T.
    Pizzato, Daniel Ferrari
    DATA SCIENCE AND CLASSIFICATION, 2006, : 203 - +
  • [6] Symbolic clustering of constrained probabilistic data
    Brito, P
    de Carvalho, FAT
    EXPLORATORY DATA ANALYSIS IN EMPIRICAL RESEARCH, PROCEEDINGS, 2003, : 12 - 21
  • [7] Clustering methods in symbolic data analysis
    Verde, R
    CLASSIFICATION, CLUSTERING, AND DATA MINING APPLICATIONS, 2004, : 299 - 317
  • [8] Algorithms for additive clustering of rectangular data tables
    Depril, Dirk
    Van Mechelen, Iven
    Mirkin, Boris
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (11) : 4923 - 4938
  • [9] Symbolic Clustering with Interval-Valued Data
    Sato-Ilic, Mika
    COMPLEX ADAPTIVE SYSTEMS, 2011, 6
  • [10] Clustering of modal-valued symbolic data
    Kejzar, Natasa
    Korenjak-Cerne, Simona
    Batagelj, Vladimir
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (02) : 513 - 541